Сложные логарифмические неравенства. Решение логарифмических неравенств

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

С ними находятся внутри логарифмов.

Примеры:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ {(x^2-3)}< \log_3⁡{(2x)}\)
\(\log_{x+1}⁡{(x^2+3x-7)}>2\)
\(\lg^2⁡{(x+1)}+10≤11 \lg⁡{(x+1)}\)

Как решать логарифмические неравенства:

Любое логарифмическое неравенство нужно стремиться привести к виду \(\log_a⁡{f(x)} ˅ \log_a{⁡g(x)}\) (символ \(˅\) означает любой из ). Такой вид позволяет избавиться от логарифмов и их оснований, сделав переход к неравенству выражений под логарифмами, то есть к виду \(f(x) ˅ g(x)\).

Но при выполнении этого перехода есть одна очень важная тонкость:
\(-\) если - число и оно больше 1 - знак неравенства при переходе остается прежним,
\(-\) если основание - число большее 0, но меньшее 1 (лежит между нулем и единицей), то знак неравенства должен меняться на противоположный, т.е.

Примеры:

\(\log_2⁡{(8-x)}<1\)
ОДЗ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Решение:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2 \(x>6\)
Ответ: \((6;8)\)

\(\log\)\(_{0,5⁡}\) \((2x-4)\)≥\(\log\)\(_{0,5}\) ⁡\({(x+1)}\)
ОДЗ: \(\begin{cases}2x-4>0\\x+1 > 0\end{cases}\)
\(\begin{cases}2x>4\\x > -1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>2\\x > -1\end{cases}\) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Решение:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Ответ: \((2;5]\)

Очень важно! В любом неравенстве переход от вида \(\log_a{⁡f(x)} ˅ \log_a⁡{g(x)}\) к сравнению выражений под логарифмами можно делать только если:


Пример . Решить неравенство: \(\log\)\(≤-1\)

Решение:

\(\log\)\(_{\frac{1}{3}}⁡{\frac{3x-2}{2x-3}}\) \(≤-1\)

Выпишем ОДЗ.

ОДЗ: \(\frac{3x-2}{2x-3}\) \(>0\)

\(⁡\frac{3x-2-3(2x-3)}{2x-3}\) \(≥\) \(0\)

Раскрываем скобки, приводим .

\(⁡\frac{-3x+7}{2x-3}\) \(≥\) \(0\)

Умножаем неравенство на \(-1\), не забыв при этом перевернуть знак сравнения.

\(⁡\frac{3x-7}{2x-3}\) \(≤\) \(0\)

\(⁡\frac{3(x-\frac{7}{3})}{2(x-\frac{3}{2})}\) \(≤\) \(0\)

Построим числовую ось и отметим на ней точки \(\frac{7}{3}\) и \(\frac{3}{2}\) . Обратите внимание, точка из знаменателя – выколота, несмотря на то, что неравенство нестрогое. Дело в том, что эта точка не будет решением, так как при подстановке в неравенство приведет нас к делению на ноль.


\(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Теперь на ту же числовую ось наносим ОДЗ и записываем в ответ тот промежуток, который попадает в ОДЗ.


Записываем окончательный ответ.

Ответ: \(x∈(\)\(\frac{3}{2}\) \(;\)\(\frac{7}{3}]\)

Пример . Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Решение:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Выпишем ОДЗ.

ОДЗ: \(x>0\)

Приступим к решению.

Решение: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типичное квадратно-логарифмическое неравенство. Делаем .

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Раскладываем левую часть неравенства на .

\(D=1+8=9\)
\(t_1= \frac{1+3}{2}=2\)
\(t_2=\frac{1-3}{2}=-1\)
\((t+1)(t-2)>0\)

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к , имеющей такое же решение, и сделаем обратную замену.

\(\left[ \begin{gathered} t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Преобразовываем \(2=\log_3⁡9\), \(-1=\log_3⁡\frac{1}{3}\).

\(\left[ \begin{gathered} \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Делаем переход к сравнению аргументов. Основания у логарифмов больше \(1\), поэтому знак неравенств не меняется.

\(\left[ \begin{gathered} x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Соединим решение неравенства и ОДЗ на одном рисунке.


Запишем ответ.

Ответ: \((0; \frac{1}{3})∪(9;∞)\)

ЛОГАРИФМИЧЕСКИЕ НЕРАВЕНСТВА В ЕГЭ

Сечин Михаил Александрович

Малая академия наук учащейся молодежи РК «Искатель»

МБОУ « Советская СШ №1», 11 класс, пгт. Советский Советского района

Гунько Людмила Дмитриевна, учитель МБОУ « Советская СШ №1»

Советского района

Цель работы: исследование механизма решения логарифмических неравенств С3 при помощи нестандартных методов, выявление интересных фактов логарифма.

Предмет исследования:

3)Научиться решать конкретные логарифмические неравенства С3 с помощью нестандартных методов.

Результаты:

Содержание

Введение………………………………………………………………………….4

Глава 1. История вопроса……………………………………………………...5

Глава 2. Сборник логарифмических неравенств ………………………… 7

2.1. Равносильные переходы и обобщенный метод интервалов…………… 7

2.2. Метод рационализации ………………………………………………… 15

2.3. Нестандартная подстановка………………............................................... 22

2.4. Задания с ловушками…………………………………………………… 27

Заключение…………………………………………………………………… 30

Литература……………………………………………………………………. 31

Введение

Я учусь в 11 классе и планирую поступить в ВУЗ, где профильным предметом является математика. А поэтому много работаю с задачами части С. В задании С3 нужно решить нестандартное неравенство или систему неравенств, как правило, связанное с логарифмами. При подготовке к экзамену я столкнулся с проблемой дефицита методов и приёмов решения экзаменационных логарифмических неравенств, предлагаемых в С3. Методы, которые изучаются в школьной программе по этой теме, не дают базу для решения заданий С3. Учитель по математике предложила мне поработать с заданиями С3 самостоятельно под её руководством. Кроме этого, меня заинтересовал вопрос: а в жизни нашей встречаются логарифмы?

С учетом этого и была выбрана тема:

«Логарифмические неравенства в ЕГЭ»

Цель работы: исследование механизма решения задач С3 при помощи нестандартных методов, выявление интересных фактов логарифма.

Предмет исследования:

1)Найти необходимые сведения о нестандартных методах решения логарифмических неравенств.

2)Найти дополнительные сведения о логарифмах.

3)Научиться решать конкретные задачи С3 с помощью нестандартных методов.

Результаты:

Практическая значимость заключается в расширении аппарата для решения задач С3. Данный материал можно будет использовать на некоторых уроках, для проведения кружков, факультативных занятий по математике.

Проектным продуктом станет сборник «Логарифмические неравенства С3 с решениями».

Глава 1. История вопроса

На протяжении 16 века быстро возрастало количество приближённых вычислений, прежде всего, в астрономии. Совершенствование инструментов, исследование планетных движений и другие работы потребовали колоссальных, иногда многолетних, расчетов. Астрономии грозила реальная опасность утонуть в невыполненных расчётах. Трудности возникали и в других областях, например, в страховом деле нужны были таблицы сложных процентов для различных значений процента. Главную трудность представляли умножение, деление многозначных чисел, особенно тригонометрических величин.

Открытие логарифмов опиралось на хорошо известные к концу 16 века свойства прогрессий. О связи между членами геометрической прогрессии q, q2, q3, ... и арифметической прогрессией их показателей 1, 2, 3,... говорил еще в "Псалмите" Архимед. Другой предпосылкой было распространение понятия степени на отрицательные и дробные показатели. Многие авторы указывали, что умножению, делению, возведению в степень и извлечению корня в геометрической прогрессии соответствуют в арифметической - в том же порядке - сложение, вычитание, умножение и деление.

Здесь скрывалась идея логарифма как показателя степени.

В истории развития учения о логарифмах прошло несколько этапов.

1 этап

Логарифмы были изобретены не позднее 1594 года независимо друг от друга шотландским бароном Непером (1550-1617) и через десять лет швейцарским механиком Бюрги (1552-1632). Оба хотели дать новое удобное средство арифметических вычислений, хотя подошли они к этой задаче по-разному. Непер кинематически выразил логарифмическую функцию и, тем самым, вступил в новую область теории функции. Бюрги остался на почве рассмотрения дискретных прогрессий. Впрочем, определение логарифма у обоих не похоже на современное. Термин "логарифм" (logarithmus) принадлежит Неперу. Он возник из сочетания греческих слов: logos - "отношение" и ariqmo - "число", которое означало "число отношений". Первоначально Непер пользовался другим термином: numeri artificiales- "искусственные числа", в противоположность numeri naturalts -"числам естественным".

В 1615 году в беседе с профессором математики Грешем Колледжа в Лондоне Генри Бригсом (1561-1631) Непер предложил принять за логарифм единицы нуль, а за логарифм десяти - 100, или, что сводится к тому же, просто 1. Так появились десятичные логарифмы и были напечатаны первые логарифмические таблицы. Позже таблицы Бригса дополнил голландский книготорговец и любитель математики Андриан Флакк (1600-1667). Непер и Бригс, хотя пришли к логарифмам раньше всех, опубликовали свои таблицы позже других - в 1620 году. Знаки log и Log были введены в 1624 году И. Кеплером. Термин "натуральный логарифм" ввели Менголи в 1659 г. и вслед за ним Н. Меркатор в 1668 г., а издал таблицы натуральных логарифмов чисел от 1 до 1000 под названием "Новые логарифмы" лондонский учитель Джон Спейдел.

На русском языке первые логарифмические таблицы были изданы в 1703 году. Но во всех логарифмических таблицах были допущены ошибки при вычислении. Первые безошибочные таблицы вышли в 1857 году в Берлине в обработке немецкого математика К. Бремикера (1804-1877).

2 этап

Дальнейшее развитие теории логарифмов связано с более широким применением аналитической геометрии и исчисления бесконечно малых. К тому времени относится установление связи между квадратурой равносторонней гиперболы и натуральным логарифмом. Теория логарифмов этого периода связана с именами целого ряда математиков.

Немецкий математик, астроном и инженер Николаус Меркатор в сочинении

"Логарифмотехника" (1668) приводит ряд, дающий разложение ln(x+1) по

степеням х:

Это выражение в точности соответствует ходу его мысли, хотя он, конечно, пользовался не знаками d, ... , а более громоздкой символикой. С открытием логарифмического ряда изменилась техника вычисления логарифмов: они стали определяться с помощью бесконечных рядов. В своих лекциях "Элементарная математика с высшей точки зрения", прочитанных в 1907-1908 годах, Ф. Клейн предложил использовать формулу в качестве исходного пункта построения теории логарифмов.

3 этап

Определение логарифмической функции как функции обратной

показательной, логарифма как показателя степени данного основания

было сформулировано не сразу. Сочинение Леонарда Эйлера (1707-1783)

"Введение в анализ бесконечно малых" (1748 г.) послужило дальнейшему

развитию теории логарифмической функции. Таким образом,

прошло 134 года с тех пор, как логарифмы впервые были введены

(считая с 1614 г.), прежде чем математики пришли к определению

понятия логарифма, которое положено теперь в основу школьного курса.

Глава 2. Сборник логарифмических неравенств

2.1. Равносильные переходы и обобщенный метод интервалов.

Равносильные переходы

, если а > 1

, если 0 < а < 1

Обобщённый метод интервалов

Данный способ наиболее универсален при решении неравенств практически любого типа. Схема решения выглядит следующим образом:

1. Привести неравенство к такому виду, где в левой части находится функция
, а в правой 0.

2. Найти область определения функции
.

3. Найти нули функции
, то есть – решить уравнение
(а решать уравнение обычно проще, чем решать неравенство).

4. Изобразить на числовой прямой область определения и нули функции.

5. Определить знаки функции
на полученных интервалах.

6. Выбрать интервалы, где функция принимает необходимые значения, и записать ответ.

Пример 1.

Решение:

Применим метод интервалов

откуда

При этих значениях все выражения, стоящие под знаками логарифмов, положительны.

Ответ:

Пример 2.

Решение:

1-й способ . ОДЗ определяется неравенством x > 3. Логарифмируя при таких x по основанию 10, получаем

Последнее неравенство можно было бы решать, применяя правила разложения, т.е. сравнивая с нулём сомножители. Однако в данном случае легко определить интервалы знакопостоянства функции

поэтому можно применить метод интервалов.

Функция f (x ) = 2x (x - 3,5)lgǀ x - 3ǀ непрерывна при x > 3 и обращается в ноль в точках x 1 = 0, x 2 = 3,5, x 3 = 2, x 4 = 4. Таким образом, определяем интервалы знакопостоянства функции f (x ):

Ответ:

2-й способ . Применим непосредственно к исходному неравенству идеи метода интервалов.

Для этого напомним, что выражения a b - a c и (a - 1)(b - 1) имеют один знак. Тогда наше неравенство при x > 3 равносильно неравенству

или

Поcледнее неравенство решается методом интервалов

Ответ:

Пример 3.

Решение:

Применим метод интервалов

Ответ:

Пример 4.

Решение:

Так как 2x 2 - 3x + 3 > 0 при всех действительных x , то

Для решения второго неравенства воспользуемся методом интервалов

В первом неравенстве сделаем замену

тогда приходим к неравенству 2y 2 - y - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те y , которые удовлетворяют неравенству -0,5 < y < 1.

Откуда, так как

получаем неравенство

которое выполняется при тех x , для которых 2x 2 - 3x - 5 < 0. Вновь применим метод интервалов

Теперь с учетом решения второго неравенства системы окончательно получаем

Ответ:

Пример 5.

Решение:

Неравенство равносильно совокупности систем

или

Применим метод интервалов или

Ответ :

Пример 6.

Решение:

Неравенство равносильно системе

Пусть

тогда y > 0,

и первое неравенство

системы принимает вид

или, раскладывая

квадратный трехчлен на множители,

Применяя к последнему неравенству метод интервалов,

видим, что его решениями, удовлетворяющими условию y > 0 будут все y > 4.

Таким образом исходное неравенство эквивалентно системе:

Итак, решениями неравенства являются все

2.2. Метод рационализации.

Раньше методом рационализации неравенства не решали, его не знали. Это "новый современный эффективный метод решения показательных и логарифмических неравенств" (цитата из книжки Колесниковой С.И.)
И даже, если педагог его знал, была опаска - а знает ли его эксперт ЕГЭ, а почему в школе его не дают? Были ситуации, когда учитель говорил ученику: "Где взял? Садись - 2."
Сейчас метод повсеместно продвигается. И для экспертов есть методические указания, связанные с этим методом, и в "Самых полных изданиях типовых вариантов..." в решении С3 используется этот метод.
МЕТОД ЧУДЕСНЫЙ!

«Волшебная таблица»


В других источниках

если a >1 и b >1, то log a b >0 и (a -1)(b -1)>0;

если a >1 и 0

если 0<a <1 и b >1, то log a b <0 и (a -1)(b -1)<0;

если 0<a <1 и 00 и (a -1)(b -1)>0.

Проведенные рассуждения несложные, но заметно упрощающие решение логарифмических неравенств.

Пример 4.

log x (x 2 -3)<0

Решение:

Пример 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Решение:

Ответ . (0; 0,5)U .

Пример 6.

Для решения этого неравенства вместо знаменателя запишем (х-1-1)(х-1), а вместо числителя - произведение (х-1)(х-3-9+х).


Ответ: (3;6)

Пример 7.

Пример 8.

2.3. Нестандартная подстановка.

Пример 1.

Пример 2.

Пример 3.

Пример 4.

Пример 5.

Пример 6.

Пример 7.

log 4 (3 x -1)log 0,25

Сделаем замену у=3 х -1; тогда данное неравенство примет вид

Log 4 log 0,25
.

Так как log 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y , то перепишем последнее неравенство в виде 2log 4 y -log 4 2 y ≤.

Сделаем замену t =log 4 y и получим неравенство t 2 -2t +≥0, решением которого являются промежутки -.

Таким образом, для нахождения значений у имеем совокупность двух простейших неравенств
Решение этой совокупности есть промежутки 0<у≤2 и 8≤у<+.

Следовательно, исходное неравенство равносильно совокупности двух показательных неравенств,
то есть совокупности

Решением первого неравенства этой совокупности является промежуток 0<х≤1, решением второго – промежуток 2≤х<+. Таким образом, исходное неравенство выполняется для всех значений х из промежутков 0<х≤1 и 2≤х<+.

Пример 8.

Решение:

Неравенство равносильно системе

Решением второго неравенства, определяющего ОДЗ, будет множество тех x ,

для которых x > 0.

Для решения первого неравенства сделаем замену

Тогда получаем неравенство

или

Множество решений последнего неравенства находится методом

интервалов: -1 < t < 2. Откуда, возвращаясь к переменной x , получаем

или

Множество тех x , которые удовлетворяют последнему неравенству

принадлежит ОДЗ (x > 0), следовательно, является решением системы,

а значит, и исходного неравенства.

Ответ:

2.4. Задания с ловушками.

Пример 1.

.

Решение. ОДЗ неравенства есть все х, удовлетворяющие условию 0. Следовательно, все х из промежутка 0

Пример 2.

log 2 (2 x +1-x 2)>log 2 (2 x-1 +1-x)+1. . ? Дело в том, что второе число с очевидностью больше чем

Заключение

Было не просто найти из большого обилия разных учебных источников особые методы решения задач С3. В ходе проделанной работы мне удалось изучить нестандартные методы решения сложных логарифмических неравенств. Это: равносильные переходы и обобщённый метод интервалов, метод рационализации, нестандартная подстановка, задания с ловушками на ОДЗ. В школьной программе эти методы отсутствуют.

Разными методами я решил 27 неравенств, предлагаемых на ЕГЭ в части С, а именно С3. Эти неравенства с решениями по методам легли в основу сборника «Логарифмические неравенства С3 с решениями», который стал проектным продуктом моей деятельности. Гипотеза, поставленная мною вначале проекта, подтвердилась: задачи С3 можно эффективно решать, зная эти методы.

Кроме этого, я выявил интересные факты логарифмов. Мне это было интересно делать. Мои проектные продукты будут полезны как для учащихся, так и для учителей.

Выводы:

Таким образом, поставленная цель проекта достигнута, проблема решена. А я получил наиболее полный и разносторонний опыт проектной деятельности на всех этапах работы. В ходе работы над проектом у меня основное развивающее воздействие было оказано на мыслительную компетентность, деятельность, связанную с логическими мыслительными операциями, развитие творческой компетентности, личной инициативы, ответственности, настойчивости, активности.

Гарантией успеха при создании исследовательского проекта для меня стали: значительный школьный опыт, умение добывать информацию из различных источников, проверять ее достоверность, ранжировать ее по значимости.

Кроме непосредственно предметных знаний по математике, расширил свои практические навыки в области информатики, получил новые знания и опыт в области психологии, наладил контакты с одноклассниками, научился сотрудничать с взрослыми людьми. В ходе проектной деятельности развивались организационные, интеллектуальные и коммуникативные общеучебные умения и навыки.

Литература

1. Корянов А. Г. ,Прокофьев А. А. Системы неравенств с одной переменной (типовые задания С3).

2. Малкова А. Г. Подготовка к ЕГЭ по математике.

3. Самарова С. С. Решение логарифмических неравенств.

4. Математика. Сборник тренировочных работ под редакцией А.Л. Семёнова и И.В. Ященко. -М.: МЦНМО, 2009. - 72 с.-

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

Неравенство называется логарифмическим, если в нём содержится логарифмическая функция.

Методы решения логарифмических неравенств не отличаются от , за исключением двух вещей.

Во-первых, при переходе от логарифмического неравенства к неравенству подлогарифмических функций следует следить за знаком получающегося неравенства . Он подчиняется следующему правилу.

Если основание логарифмической функции больше $1$, то при переходе от логарифмического неравенства к неравенству подлогарифмических функций знак неравенства сохраняется, а если же меньше $1$, то меняется на противоположный.

Во-вторых, решение любого неравенства – промежуток, а, значит, в конце решения неравенства подлогарифмических функций необходимо составить систему из двух неравенств: первым неравенством этой системы будет неравенство подлогарифмических функций, а вторым – промежуток области определения логарифмических функций, входящих в логарифмическое неравенство.

Практика.

Решим неравенства:

1. $\log_{2}{(x+3)} \geq 3.$

$D(y): \ x+3>0.$

$x \in (-3;+\infty)$

Основание логарифма равно $2>1$, поэтому знак не меняется. Пользуясь определением логарифма, получим:

$x+3 \geq 2^{3},$

$x \in }