Основы пилотируемой космонавтики. Военно-политические аспекты пилотируемой космонавтики

| | | | |
космонавтика история, космонавтика
Космона́втика (от греч. κόσμος - Вселенная и ναυτική - искусство мореплавания, кораблевождение) - теория и практика навигации за пределами атмосферы Земли для исследования космического пространства при помощи автоматических и пилотируемых космических аппаратов. Другими словами, это наука и технология космических полётов.

В русском языке этот термин был употреблён одним из пионеров советской ракетной техники Г. Э. Лангемаком, когда он переводил на русский язык монографию А. А. Штернфельда «Введение в космонавтику» («Initiation à la Cosmonautique»).

Основу ракетостроения заложили в своих трудах в начале XX века Константин Циолковский, Герман Оберт, Роберт Годдард и Рейнхольд Тилинг. Важным шагом стал запуск с космодрома Байконур первого искусственного спутника Земли в 1957 году СССР - Спутника-1.

Грандиозным свершением и отправной точкой развития пилотируемой космонавтики стал полёт советского космонавта Юрия Гагарина 12 апреля 1961 года. Другое выдающееся событие в области космонавтики - высадка человека на Луну состоялось 21 июля 1969 года. Американский астронавт Нил Армстронг сделал первый шаг по поверхности естественного спутника Земли со словами:«Это маленький шаг для одного человека, но огромный скачок для всего человечества».

  • 1 Этимология
  • 2 История
    • 2.1 Ранняя история (до 1945 года)
    • 2.2 Ранняя советская ракетно-космическая программа
    • 2.3 Ранняя американская ракетно-космическая программа
    • 2.4 Важнейшие этапы освоения космоса с 1957 года
    • 2.5 Современность
  • 3 Коммерческое освоение космоса
  • 4 Военно-космическая деятельность
  • 5 Космические агентства
  • 6 Важные космические программы и полёты КА разных стран
    • 6.1 Искусственные спутники Земли (ИСЗ)
      • 6.1.1 Космические телескопы
    • 6.2 Автоматические межпланетные станции
      • 6.2.1 Лунные станции
    • 6.3 Пилотируемые полёты
    • 6.4 Орбитальные станции
    • 6.5 Частные космические корабли
  • 7 Ракеты-носители
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Этимология

Впервые термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику» (фр. «Initiation à la Cosmonautique»), который был посвящён вопросам межпланетных путешествий. 1933 году работа была представлена польской научной общественности, но не вызвала интереса и была издана лишь в 1937 году в СССР, куда в 1935 переехал автор. Благодаря ему же, в русский язык вошли слова «космонавт» и «космодром». Долгое время эти термины считались экзотическими, и даже Яков Перельман упрекал Штернфельда в том, что тот запутывает вопрос, выдумывая неологизмы вместо устоявшихся названий:«астронавтика», «астронавт», «ракетодром». Основные идеи, изложенные в монографии, Штернфельд доложил в Варшавском университете 6-го декабря 1933 года.

В словарях слово «космонавтика» отмечено с 1958 года. художественной литературе слово «космонавт» впервые появилось в 1950 году в фантастической повести Виктора Сапарина «Новая планета».

В целом, в русском языке -навт, -навтик(а) утратили своё значение (какое эти слова имели в греческом языке) и превратились в подобие служебных частей слова, вызывающих представление о «плавании» - как то «стратонавт», «акванавт» и т. п.

История

Ранняя история (до 1945 года)

Макет первого искусственного спутника Земли.

Идея космических путешествий возникла после появления гелиоцентрической системы мира, когда стало ясно, что планеты - это объекты, подобные Земле, и таким образом, человек в принципе мог бы посетить их. Первым опубликованным описанием пребывания человека на Луне стала фантастическая повесть Кеплера «Somnium» (написана 1609, опубликована 1634). Фантастические путешествия на другие небесные тела описывали также Фрэнсис Годвин, Сирано де Бержерак и другие.

Теоретические основы космонавтики были заложены в работе Исаака Ньютона «Математические начала натуральной философии», опубликованной в 1687 году. Существенный вклад в теорию расчёта движения тел в космическом пространстве внесли также Эйлер и Лагранж.

Романы Жюля Верна «С Земли на Луну» (1865) и «Вокруг Луны» (1869) уже правильно описывают полёт Земля-Луна с точки зрения небесной механики, хотя техническая реализация там явно хромает.

23 марта 1881 года Н. И. Кибальчич, находясь в заключении, выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. За несколько дней до казни Кибальчич разработал оригинальный проект летательного аппарата, способного совершать космические перелёты. Его просьба о передаче рукописи в Академию наук следственной комиссией удовлетворена не была, проект был впервые опубликован лишь в 1918 году в журнале «Былое», № 4-5.

Российский учёный Константин Циолковский был одним из первых, кто выдвинул идею об использовании ракет для космических полётов. Ракету для межпланетных сообщений он спроектировал в 1903 году. Формула Циолковского, определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Немецкий ученый Герман Оберт в 1920-е годы также изложил принципы межпланетного полёта.

Американский ученый Роберт Годдард в 1923 году начал разрабатывать жидкостный ракетный двигатель и работающий прототип был создан к концу 1925 года. 16 марта 1926 года он осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР и Германии. СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). 1933 году на их базе был создан Реактивный институт (РНИИ).

В Германии подобные работы вело Немецкое Общество межпланетных сообщений (VfR). 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты. VfR работал и Вернер фон Браун, который с декабря 1932 года начал разработку ракетных двигателей на артиллерийском полигоне германской армии в Куммерсдорфе. После прихода нацистов к власти в Германии были выделены средства на разработку ракетного оружия, и весной 1936 года была одобрена программа строительства ракетного центра в Пенемюнде, техническим директором которого был назначен фон Браун. нём была разработана баллистическая ракета А-4 с дальностью полета 320 км. Во время Второй мировой войны 3 октября 1942 года состоялся первый успешный запуск этой ракеты, а в 1944 году началось её боевое применение под названием V-2. июне 1944 года ракета V-2 стала первым сделанным человеком объектом в космосе, достигнув в суборбитальном полете высоты 176 км.

Военное применение V-2 продемонстрировало огромные возможности ракетной техники, и наиболее мощные послевоенные державы - США и СССР - начали разработку баллистических ракет на основе трофейных германских технологий и с привлечением пленных германских инженеров.

См. также:Второе (космическое) управление и Совет главных конструкторов

Для создания средств доставки ядерного оружия 13 мая 1946 года Совет Министров СССР принял постановление о развёртывании масштабной работы по развитию ракетостроения. соответствии с этим постановлением было создано Второе (космическое) управление и Научно-исследовательский артиллерийский институт реактивного вооружения № 4.

Начальником института был назначен генерал А. И. Нестеренко, его заместителем по специальности «Жидкостные баллистические ракеты» - полковник М. К. Тихонравов, соратник С. П. Королёва по ГИРДу и РНИИ. Михаил Клавдиевич Тихонравов был известен как создатель первой жидкостной ракеты, стартовавшей в Нахабино 17 августа 1933 года. Он же в 1945 году возглавил проект подъёма двух космонавтов на высоту 200 километров с помощью ракеты типа «Фау-2» и управляемой ракетной кабины. Проект был поддержан Академией наук и одобрен Сталиным. Однако в трудные послевоенные годы руководству военной отрасли было не до космических проектов, которые воспринимались как фантастика, мешающая выполнению главной задачи по созданию «дальнобойных ракет».

Исследуя перспективы развития ракет, создаваемых по классической последовательной схеме, М. К. Тихонравов пришёл к выводу об их непригодности для межконтинентальных расстояний. Исследования, проведённые под руководством Тихонравова, показали, что пакетная схема из ракет, созданных в КБ Королёва, обеспечит скорость в четыре раза большую, чем возможная при обычной компоновке. Внедрением «пакетной схемы» группа Тихонравова приблизила выход человека в космическое пространство. инициативном порядке продолжались исследования проблем, связанных с запуском спутников и их возвращением на Землю.

16 сентября 1953 года по заказу ОКБ Королёва в НИИ-4 была открыта первая научно-исследовательская работа по космической тематике «Исследования по вопросу создания первого искусственного спутника Земли». Группа Тихонравова, имевшая солидный задел по этой теме, выполнила её оперативно.

В 1956 году М. К. Тихонравов с частью своих сотрудников переводится из НИИ-4 в ОКБ Королёва начальником отдела по проектированию спутников. При его непосредственном участии создаются первые ИСЗ, пилотируемые корабли, проекты первых автоматических межпланетных и лунных аппаратов.

Ранняя американская ракетно-космическая программа

«Спутниковый кризис», то есть тот факт, что первый искусственный спутник Земли был запущен в СССР, а не в США, привел ко многим инициативам правительства США, направленным на развитие космических исследований:

  • принятие закона о подготовке кадров для национальной обороны в сентябре 1958;
  • создание в феврале 1958 Агентства передовых оборонных исследовательских проектов - DARPA;
  • создание указом президента США Эйзенхауэра от 29 июля 1958 Национального управления по аэронавтике и исследованию космического пространства - NASA;
  • огромное увеличение инвестиций в космические исследования. 1959 Конгресс США выделил на эти цели 134 миллиона долларов, что в четыре раза превышает показатель предыдущего года. К 1968 эта цифра достигла 500 миллионов.

Началась космическая гонка между США и СССР. Первым спутником, запущенным США, стал спутник «Эксплорер-1», запущенный 1 февраля 1958 года командой Вернера фон Брауна (он был завербован для работы в США по программе Операция «Беспросветность» (англ. Operation Overcast), позднее ставшей известной под названием Операция «Скрепка»). Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С (Jupiter-C), первоначально предназначавшаяся для испытания уменьшенных макетов боеголовок.

Этому запуску предшествовала неудачная попытка ВМС США запустить спутник «Авангард-1», широко разрекламированный в связи с программой Международного Геофизического Года. Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника (руководство США хотело, чтобы спутник был запущен военными), поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда».

Первым астронавтом США в космосе стал Алан Шепард, который 5 мая 1961 года совершил суборбитальный полёт на космическом корабле Меркурий-Редстоун-3. Первым из астронавтов США орбитальный полёт совершил Джон Гленн 20 февраля 1962 года на корабле Меркурий-Атлас-6.

Важнейшие этапы освоения космоса с 1957 года

В 1957 году под руководством Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

  • 4 октября 1957 - запущен первый искусственный спутник Земли Спутник-1.
  • 3 ноября 1957 - запущен второй искусственный спутник Земли Спутник-2, впервые выведший в космос живое существо, - собаку Лайку.
  • 4 января 1959 - станция «Луна-1» прошла на расстоянии 6000 километров от поверхности Луны и вышла на гелиоцентрическую орбиту. Она стала первым в мире искусственным спутником Солнца.
  • 14 сентября 1959 - станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Ясности вблизи кратеров Аристилл, Архимед и Автолик, доставив вымпел с гербом СССР.
  • 4 октября 1959 - запущена автоматическая межпланетная станция «Луна-3», которая впервые в мире сфотографировала невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр.
  • 19 августа 1960 - совершён первый в истории орбитальный полёт в космос живых существ с успешным возвращением на Землю. На корабле «Спутник-5» этот полёт совершили собаки Белка и Стрелка.
  • 1 декабря 1960 - совершён первый запуск человеческих клеток в космос – клеток Генриетты Лакс. Зарождение космической клеточной биологии.
  • 12 апреля 1961 - совершён первый полёт человека в космос (Юрий Гагарин) на корабле Восток-1.
  • 12 августа 1962 - совершён первый в мире групповой космический полёт на кораблях Восток-3 и Восток-4. Максимальное сближение кораблей составило около 6.5 км.
  • 16 июня 1963 - совершён первый в мире полёт в космос женщины-космонавта (Валентина Терешкова) на космическом корабле Восток-6.
  • 12 октября 1964 - совершил полёт первый в мире многоместный космический корабль Восход-1.
  • 18 марта 1965 - совершён первый в истории выход человека в открытый космос. Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2.
  • 3 февраля 1966 - АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны.
  • 1 марта 1966 - станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР. Это был первый в мире перелёт космического аппарата с Земли на другую планету.
  • 3 апреля 1966 - станция «Луна-10» стала первым искусственным спутником Луны.
  • 30 октября 1967 - произведена первая стыковка двух беспилотных космических аппаратов «Космос-186» и «Космос-188». (CCСР).
  • 15 сентября 1968 - первое возвращение космического аппарата (Зонд-5) на Землю после облета Луны. На борту находились живые существа:черепахи, плодовые мухи, черви, растения, семена, бактерии.
  • 16 января 1969 - произведена первая стыковка двух пилотируемых космических кораблей Союз-4 и Союз-5.
  • 21 июля 1969 - первая высадка человека на Луну (Н. Армстронг) в рамках лунной экспедиции корабля Аполлон-11, доставившей на Землю, в том числе и первые пробы лунного грунта.
  • 24 сентября 1970 - станция «Луна-16» произвела забор и последующую доставку на Землю (станцией «Луна-16») образцов лунного грунта. Она же - первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).
  • 17 ноября 1970 - мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого самоходного аппарата, управляемого с Земли:Луноход-1.
  • 15 декабря 1970 - первая в мире мягкая посадка на поверхность Венеры:«Венера-7».
  • 19 апреля 1971 - запущена первая орбитальная станция Салют-1.
  • 13 ноября 1971 - станция «Маринер-9» стала первым искусственным спутником Марса.
  • 27 ноября 1971 - станция «Марс-2» впервые достигла поверхности Марса.
  • 2 декабря 1971 - первая мягкая посадка АМС на Марс:«Марс-3».
  • 3 марта 1972 - запуск первого аппарата, покинувшего впоследствии пределы Солнечной системы:Пионер-10.
  • 20 октября 1975 - станция «Венера-9» стала первым искусственным спутником Венеры.
  • октябрь 1975 - мягкая посадка двух космических аппаратов «Венера-9» и «Венера-10» и первые в мире фотоснимки поверхности Венеры.
  • 12 апреля 1981 - первый полёт первого многоразового транспортного космического корабля «Колумбия».
  • 20 февраля 1986 - вывод на орбиту базового модуля орбитальной станции Мир
  • 15 ноября 1988 - первый и единственный космический полёт МКС «Буран» в автоматическом режиме.
  • 24 апреля 1990 - запуск телескопа Хаббл на околоземную орбиту.
  • 7 декабря 1995 - станция «Галилео» стала первым искусственным спутником Юпитера.
  • 20 ноября 1998 - запуск первого блока «Заря» Международной космической станции.
  • 24 июня 2000 - станция «NEAR Shoemaker» стала первым искусственным спутником астероида (433 Эрос).
  • 30 июня 2004 - станция «Кассини» стала первым искусственным спутником Сатурна.
  • 15 января 2006 - станция «Стардаст» доставила на землю образцы кометы Вильда 2.
  • 17 марта 2011 - станция «MESSENGER» стала первым искусственным спутником Меркурия.

Современность

Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства. Активно развивается космический туризм. Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу).

В 2009 году в мире на космические программы было потрачено $68 млрд, в том числе в США - $48,8 млрд, ЕС - $7,9 млрд, Японии - $3 млрд, России - $2,8 млрд, Китае - $2 млрд.

Программы пилотируемой космонавтики имеют тенденцию к сокращению. С 1972 года прекращены пилотируемые полёты к другим космическим телам, в 2011 году прекращены программы многоразовых космических кораблей, осталась только одна орбитальная станция против двух одновременно поддерживаемых СССР в середине 1980-х годов.

Коммерческое освоение космоса

Существуют три основных направления прикладной космонавтики:

  • Космические информационные комплексы - современные системы связи, метеорология, навигация, системы контроля использования природных ресурсов, охрана окружающей среды.
  • Космические научные системы - научные исследования и натурные эксперименты.
  • Космическая индустриализация - производство фармакологических препаратов, новых материалов для электронной, электротехнической, радиотехнических и других отраслей. перспективе - разработка ресурсов Луны, других планет Солнечной системы и астероидов, удаление в космос отходов вредных промышленных производств.

Военно-космическая деятельность

Основная статья:Военно-космическая деятельность

Космические аппараты используются для спутниковой разведки, дальнего обнаружения баллистических ракет, связи, навигации. Создавались также системы противоспутникового оружия.

Космические агентства

Основная статья:Список космических агентств
  • Бразильское космическое агентство - основано в 1994 году.
  • Европейское космическое агентство (ЕКА) - 1964.
  • Индийская организация космических исследований - 1969.
  • Канадское космическое агентство - 1989.
  • Китайское национальное космическое управление - 1993.
  • Национальное космическое агентство Украины (НКАУ) - 1996.
  • Национальное управление США по аэронавтике и использованию космоса (НАСА) - 1958.
  • Федеральное космическое агентство России (ФКА РФ) - (1990).
  • Японское агентство аэрокосмических исследований (JAXA) - 2003.

Важные космические программы и полёты КА разных стран

Искусственные спутники Земли (ИСЗ)

  • Спутник - серия первых в мире ИСЗ.
    • Спутник-1 - первый аппарат, запущенный человеком в космос.
  • Авангард - серия первых американских спутников. (США)

Спутники СССР и России списком :Электрон // Полёт// Метеор // Экран // Радуга // Горизонт // Молния // Гейзер // Альтаир // Купон // ГЛОНАСС // Парус // Фотон // Око // Стрела // Ресурс // Целина // Бион // Вектор /Ромб // Цикада.

Космические телескопы

  • Астрон - космический ультрафиолетовый телескоп (СССР).
  • Хаббл - космический телескоп-рефлектор. (США).
  • Swift - космическая обсерватория для наблюдения гамма-вспышек (США, Италия, Великобритания).

Автоматические межпланетные станции

  • Пионер - программа исследования Луны, межпланетного пространства, Юпитера и Сатурна. (США)
  • Вояджер - программа исследования планет-гигантов. (США)
  • Маринер - исследования Венеры, Марса и Меркурия. (США)
  • Марс - исследования Марса, первая мягкая посадка на его поверхность. (СССР)
  • Венера - программа исследования атмосферы Венеры и её поверхности. (СССР)
  • Викинг - программа исследования поверхности Марса. (США)
  • Вега - встреча с кометой Галлея, высадка аэрозонда на Венеру. (СССР)
  • Фобос - программа исследований спутников Марса. (СССР)
  • Марс Экспресс - искусственный спутник Марса, высадка марсохода «Бигль-2». (ЕКА)
  • Галилео - исследование Юпитера и его спутников. (НАСА)
  • Гюйгенс - зонд для исследования атмосферы Титана. (ЕКА)
  • Розетта - высадка космического аппарата на ядро кометы Чурюмова-Герасименко (ЕКА).
  • Хаябуса - забор грунта с астероида Итокава (JAXA).
  • MESSENGER - исследование Меркурия (НАСА).
  • Магеллан (КА) - исследование Венеры (НАСА).
  • Новые горизонты - исследование Плутона и его спутников (НАСА).
  • Venus Express- исследование Венеры (ЕКА).
  • Phoenix - программа исследования поверхности Марса (НАСА).

Лунные станции

  • Луна - исследование Луны, доставка лунного грунта, Луноход-1 и Луноход-2. (СССР)
  • Рейнджер - получение телевизионных изображений Луны при падении на её поверхность. (США)
  • Эксплорер 35 (Лунар Эксплорер 2) - изучение Луны и окололунного пространства с селеноцентрической орбиты. (США)
  • Лунар Орбитер - вывод на орбиту вокруг Луны, картографирование лунной поверхности. (США).
  • Сервейер - отработка мягкой посадки на Луну, исследования лунного грунта (США).
  • Lunar Prospector - исследования Луны (США).
  • Смарт-1 - исследования Луны, аппарат оснащён ионным двигателем. (ЕКА).
  • Kaguya - исследования Луны и окололунного пространства (Япония).
  • Чанъэ-1 - исследования Луны, картографирование лунной поверхности (Китай).

Пилотируемые полёты

  • Восток - отработка первых пилотируемых полётов в космос. (СССР, 1961-1963)
  • Меркурий - отработка пилотируемых полётов в космос. (США, 1961-1963)
  • Восход - пилотируемые орбитальные полёты; первый выход в открытый космос, первые многоместные корабли. (СССР, 1964-1965)
  • Джемини - двухместные космические корабли, первые стыковки на околоземной орбите. (США, 1965-1966)
  • Аполлон - пилотируемые полеты на Луну. (США, 1968-1972/1975)
  • Союз - пилотируемые орбитальные полеты. (СССР/Россия, с 1968)
    • Экспериментальный проект Аполлон-Союз (ЭПАС) (англ. Apollo-Soyuz Test Project, ASTP, 1975).
  • Спейс Шаттл - многоразовый космический корабль. (США, 1981-2011)
  • Шэньчжоу - орбитальные пилотируемые полёты. (Китай, с 2003)

Орбитальные станции

  • Салют - первая серия орбитальных станций. (СССР)
  • Скайлэб - орбитальная станция. (США)
  • Мир - первая орбитальная станция модульного типа. (СССР)
  • Международная космическая станция (МКС).
  • Тяньгун-1 (КНР)

Частные космические корабли

  • SpaceShipOne - первый частный космический корабль (суборбитальный).
  • SpaceShipTwo - туристический суборбитальный космический корабль. Дальнейшее развитие SpaceShipOne.
  • Дракон (Dragon SpaceX) - транспортный космический корабль, разрабатывается компанией SpaceX, по заказу НАСА в рамках программы «Коммерческой орбитальной транспортировки» (COTS).

Ракеты-носители

Основная статья:Ракета-носитель См. также:Список ракет-носителей

См. также

  • Космодром
  • Космическая индустрия
  • Список космонавтов и астронавтов
  • Космонавтика России Роскосмос Орбитальная спутниковая группировка России
  • Хронология пилотируемых космических полётов
  • Хронология космических исследований
  • История исследования Солнечной системы
  • Первые в космосе

Примечания

  1. Космонавтика - Астрономический словарь.EdwART (2010). Проверено 29 ноября 2012. Архивировано из первоисточника 1 декабря 2012.
  2. Статья Эдуарда Вилля Георгий Лангемак - отец «Катюши»
  3. 1 2 Первушин А. И. «Красный космос. Звездные корабли Советской империи». М.:«Яуза», «Эксмо», 2007. ISBN 5-699-19622-6
  4. 1 2 П. Я. Черных. «Историко-этимологический словарь современного русского языка», том 1. М.:«Русский язык», 1994. ISBN 5-200-02283-5
  5. Н. И. Кибальчич. Биографическая статья в БСЭ.
  6. Вальтер Дорнбергер:Пенемюде, c. 297 (Peenemuende, Walter Dornberger, Moewig, Berlin 1985. ISBN 3-8118-4341-9) (нем.)
  7. Ракета. Историческая справка
  8. Что составляло примерно 0,14 % (1958) и 0,3 % (1960) от расходов федерального бюджета США
  9. Бессмертные клетки HeLa
  10. Исследование:США затратили на космические программы $48,8 млрд // ИТАР-ТАСС

Литература

  • К. А. Гильзин. Путешествие к далеким мирам. Государственное издательство детской литературы Министерства просвещения РСФСР. Москва, 1956
  • Циолковский К. Э. Труды по космонавтике. М.:Машиностроение, 1967.
  • Штернфельд А. А. Введение в космонавтику. М.; Л.:ОНТИ, 1937. 318 с; Изд. 2-е. М.:Наука, 1974. 240 с.
  • Жаков А. М Основы космонавтики. СПб:Политехника, 2000. 173 с. ISBN 5-7325-0490-7
  • Тарасов Е. В. Космонавтика. М.:Машиностроение, 1977. 216 с.
Энциклопедии по космонавтике
  • Космонавтика. Малая энциклопедия. Гл. редактор В. П. Глушко. М.:Советская энциклопедия, 1970. 527 c.
  • Энциклопедия Космонавтика. Гл. ред. В. П. Глушко. М.:Советская энциклопедия, 1985. 526 c.
  • Всемирная энциклопедия космонавтики. 2-х томах. М.:Военный парад, 2002.
  • интернет-энциклопедия «Космонавтика»

Ссылки

  • ФКА РФ
  • РКК «Энергия» имени С. П. Королёва
  • НПО им. С. А. Лавочкина
  • ГКНПЦ им. М. В. Хруничева
  • Исследовательский центр имени М. В. Келдыша
  • Пилотируемый космос
  • Фотоархив «История отечественной космонавтики»
  • Первые в космосе (огромный фото-, аудио-, видео- архив советской и российской космонавтики)
  • Всероссийский детский и молодёжный центр аэрокосмического образования им. С. П. Королева Мемориального музея космонавтики (ВДМЦ АКО)
  • Из истории развития отечественной космонавтики:исследование космического пространства с помощью автоматических космических станций - научно-популярная лекция, прочитанная Н. Морозовым в ФИАНе в 2007 г.

космонавтика, космонавтика в україні, космонавтика и её связь с другими науками, космонавтика история, космонавтика картинка, космонавтика картинки, космонавтика костюмы и корабли, космонавтика россии, космонавтика-уикипедия

Космонавтика Информацию О

Изучив этот параграф, мы:

  • вспомним ученых, внесших значительный вклад в освоение космоса;
  • узнаем, как можно изменять орбиту космических кораблей;
  • убедимся, что космонавтика широко используется на Земле.

Зарождение космонавтики

Космонавтика изучает движение искусственных спутников Земли (ИСЗ), космических кораблей и межпланетных станций в космическом пространстве. Существует различие между природными телами и искусственными космическими аппаратами: последние при помощи реактивных двигателей могут изменять параметры своей орбиты.

Значительный вклад в создание научных основ космонавтики, пилотируемых космических кораблей и автоматических межпланетных станций (АМС) внесли советские ученые.

Рис. 5.1. К. Э. Циолковский (1857-1935)

К. Э. Циолковский (рис. 5.1) создал теорию реактивного движения. В 1902 г. он впервые доказал, что только при помощи реактивного двигателя можно достичь первой космической скорости.

Рис. 5.2. Ю. В. Кондратюк (1898-1942)

Ю. В. Кондратюк (А. Г. Шаргей; рис. 5.2) в 1918 г. рассчитал траекторию полета на Луну, которая впоследствии была применена в США при подготовке космических экспедиций «Аполлон». Выдающийся конструктор первых в мире космических кораблей и межпланетных станций С. П. Королев (1906-1966) родился и учился в Украине. Под его руководством 4 октября 1957 г. в Советском Союзе был запущен первый в мире ИСЗ, созданы АМС, которые первыми в истории космонавтики достигли Луны, Венеры и Марса. Наибольшим достижением космонавтики в то время был первый пилотируемый полет космического корабля «Восток», на котором 12 апреля 1961 г. летчик-космонавт Ю. А. Гагарин совершил кругосветное космическое путешествие.

Круговая скорость

Рассмотрим орбиту спутника, который обращается по круговой орбите на высоте Н над поверхностью Земли (рис. 5.3).

Рис. 5.3. Круговая скорость определяет движение тела вокруг Земли на постоянной высоте Н над ее поверхностью

Для того чтобы орбита была постоянной и не изменяла свои параметры, должны выполняться два условия.

  1. Вектор скорости должен быть направлен по касательной к орбите.
  2. Величина линейной скорости спутника должна равняться круговой скорости, которая определяется уравнением:

(5.1)

где - Мзем = 6×10 24 кг - масса Земли; G = 6,67×10 -11 (H м 2)/кг 2 - постоянная всемирного тяготения; Н - высота спутника над поверхностью Земли, Rзем = 6,37 10 9 м - радиус Земли. Из формулы (5.1) следует, что самое большое значение круговая скорость имеет при высоте Н = 0, то есть в том случае, когда спутник движется у самой поверхности Земли. Такая скорость в космонавтике называется первой космической:

В реальных условиях ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью, ибо плотная атмосфера очень тормозит движение тел, которые перемещаются с большой скоростью. Если бы даже скорость ракеты в атмосфере достигла величины первой космической, то большое сопротивление воздуха разогрело бы ее поверхность до температуры плавления. Поэтому ракеты во время старта с поверхности Земли сначала поднимаются вертикально вверх до высоты нескольких сотен километров, где сопротивление воздуха незначительно, и только тогда спутнику сообщается соответствующая скорость в горизонтальном направлении.

Для любознательных

Невесомость во время полета в космическом корабле наступает в момент, когда прекращают работу ракетные двигатели. Для того чтобы ощутить состояние невесомости, не обязательно лететь в космос. Любой прыжок в высоту, или длину, когда исчезает опора под ногами, дает нам кратковременное ощущение состояния невесомости.

Движение космических аппаратов по эллиптическим орбитам

Если величина скорости спутника будет отличаться от круговой или вектор скорости не будет параллелен плоскости горизонта, тогда космический аппарат (КА) будет обращаться вокруг Земли по эллиптической траектории. Согласно первому закону, в одном из фокусов эллипса должен находиться центр Земли, поэтому плоскость орбиты спутника должна пересекать плоскость экватора или совпадать с ней (рис. 5.4). В этом случае высота спутника над поверхностью Земли изменяется в пределах от перигея до апогея. ствующим точкам на орбитах планет - перигелия и афелия (см. § 4).

Рис. 5.4. Движение спутника по эллиптической траектории похоже на обращение планет в зоне тяготения Солнца. Изменение скорости определяется законом сохранения энергии: сумма кинетической и потенциальной энергии тела при движении по орбите остается постоянной

Если спутник движется по эллиптической траектории, то, согласно второму закону Кеплера, изменяется его скорость: наибольшую скорость спутник имеет в перигее, а наименьшую - в апогее.

Период обращения космического аппарата

Если космический аппарат движется по эллипсу вокруг Земли с переменной скоростью, его период обращения можно определить с помощью третьего закона Кеплера (см. § 4):

где Тс - период обращения спутника вокруг Земли; Т м = 27,3 суток - сидерический период обращения Луны вокруг Земли; а с - большая полуось орбиты спутника; =380000 км большая полуось орбиты Луны. Из уравнения (5.3) определим:

(5.4)

Рис. 5.5. Геостационарный спутник обращается на высоте 35600 км только по круговой орбите в плоскости экватора с периодом 24 ч (N - Северный полюс)

В космонавтике особую роль играют ИСЗ, которые «висят» над одной точкой Земли - это геостационарные спутники, использующиеся для космической связи (рис. 5.5).

Для любознательных

Для обеспечения глобальной связи достаточно вывести на геостационарную орбиту три спутника, которые должны «висеть» в вершинах правильного треугольника. Сейчас на таких орбитах находятся уже несколько десятков коммерческих спутников разных стран, обеспечивая ретрансляцию телевизионных программ, мобильную телефонную связь, компьютерную сеть Интернет.

Вторая и третья космические скорости

Эти скорости определяют условия соответственно для межпланетных и межзвездных перелетов. Если сравнить вторую космическую скорость V 2 с первой V 1 (5.2), то получим соотношение:

Космический корабль, стартующий с поверхности Земли со второй космической скоростью и движущийся по параболической траектории, мог бы полететь к звездам, потому что парабола является незамкнутой кривой и уходит в бесконечность. Но в реальных условиях такой корабль не покинет Солнечную систему, ибо любое тело, которое вышло за пределы земного тяготения, попадает в гравитационное поле Солнца. То есть космический корабль станет спутником Солнца и будет обращаться в Солнечной системе подобно планетам или астероидам.

Для полета за пределы Солнечной системы космическому кораблю нужно сообщить третью космическую скорость V 3 =16,7 км/с. К сожалению, мощность современных реактивных двигателей еще недостаточна для полета к звездам при старте непосредственно с поверхности Земли. Но если КА пролетает через гравитационное поле другой планеты, он может получить дополнительную энергию, которая позволяет в наше время совершать межзвездные полеты. В США уже запустили несколько таких АМС («Пионер-10,11» и «Вояджер-1,2»), которые в гравитационном поле планет-гигантов увеличили свою скорость настолько, что в будущем вылетят за пределы Солнечной системы.

Для любознательных

Полет на Луну происходит в гравитационном поле Земли, поэтому КА летит по эллипсу, в фокусе которого находится центр Земли. Самая выгодная траектория полета с минимальным расходом топлива - это эллипс, являющийся касательным к орбите Луны.

Во время межпланетных полетов, например на Марс, КА летит по эллипсу, в фокусе которого находится Солнце. Самая выгодная траектория с наименьшей затратой энергии проходит по эллипсу, который является касательным к орбите Земли и Марса. Точки старта и прилета лежат на одной прямой по разные стороны от Солнца. Такой полет в одну сторону длится более 8 месяцев. Космонавтам, которые в недалеком будущем посетят Марс, надо учесть, что сразу же вернуться на Землю они не смогут: Земля по орбите движется быстрее, чем Марс, и через 8 месяцев его опередит. До возвращения космонавтам нужно находиться на Марсе еще 8 месяцев, пока Земля займет выгодное положение. То есть общая продолжительность экспедиции на Марс будет не менее двух лет.

Практическое применение космонавтики

В наше время космонавтика служит не только для изучения Вселенной, но и приносит большую практическую пользу людям на Земле. Искусственные космические аппараты изучают погоду, исследуют космос, помогают решать экологические проблемы, ведут поиски полезных ископаемых, обеспечивают радионавигацию (рис. 5.6, 5.7). Но наибольшие заслуги космонавтики в развитии космических средств связи, космического мобильного телефона, телевидения и Интернета.

Рис. 5.6. Международная космическая станция

Ученые проектируют строительство космических солнечных электростанций, которые будут передавать энергию на Землю. В недалеком будущем кто-нибудь из нынешних учеников полетит на Марс, будет осваивать Луну и астероиды. Нас ждут загадочные чужие миры и встреча с другими формами жизни, а возможно, и с внеземными цивилизациями.

Рис. 5.7. Космическая станция в виде гигантского кольца, идею которой предложил Циолковский. Вращение станции вокруг оси создаст искусственное притяжение

Рис. 5.8. Старт украинской ракеты «Зенит» с космодрома в Тихом океане

Выводы

Космонавтика как наука о полетах в межпланетное пространство бурно развивается и занимает особое место в методах изучения небесных тел и космической среды. Кроме того в наше время космонавтика успешно применяется в средствах связи (телефон, радио, телевидение, Интернет), в навигации, геологии, метеорологии и многих других областях деятельности человека.

Тесты

  1. С первой космической скоростью может лететь космический корабль, обращающийся вокруг Земли по круговой орбите на такой высоте над поверхностью:
      А. О км.
      Б. 100 км.
      В. 200 км.
      Г. 1000 км.
      Д. 10000 км.
  2. Ракета стартует с поверхности Земли со второй космической скоростью. Куда она долетит?
      А. До Луны.
      Б. До Солнца.
      В. Станет спутником Солнца.
      Г. Станет спутником Марса.
      Д. Полетит к звездам.
  3. Космический корабль обращается вокруг Земли по эллиптической орбите. Как называется точка орбиты, в которой космонавты находятся ближе всего к Земле?
      А. Перигей.
      Б. Перигелий.
      В. Апогей.
      Г. Афелий.
      Д. Парсек.
  4. Ракета с космическим кораблем стартует с космодрома. Когда космонавты почувствуют невесомость?
      А. На высоте 100 м.
      Б. На высоте 100 км.
      В. Когда выключится реактивный двигатель.
      Г. Когда ракета попадет в безвоздушное пространство.
  5. Какие из этих физических законов не выполняются в невесомости?
      А. Закон Гука.
      Б. Закон Кулона.
      В. Закон всемирного тяготения.
      Г. Закон Бойля-Мариотта.
      Д. Закон Архимеда.
  6. Почему ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью?
  7. Чем отличается перигей от перигелия?
  8. Почему при запуске космического корабля возникают перегрузки?
  9. Выполняется ли в невесомости закон Архимеда?
  10. Космический корабль обращается вокруг Земли по круговой орбите на высоте 200 км. Определите линейную скорость корабля.
  11. Может ли космический корабль сделать за сутки 24 оборота вокруг Земли?

Диспуты на предложенные темы

  1. Что вы можете предложить для будущих космических программ?

Задания для наблюдений

  1. Вечером найдите на небе спутник или международную космическую станцию, которые освещаются Солнцем и с поверхности Земли выглядят, как яркие точки. Нарисуйте их путь среди созвездий в течение 10 минут. Чем отличается полет спутника от движения планет?

Ключевые понятия и термины:

Апогей, геостационарный спутник, вторая космическая скорость, круговая скорость, межпланетная космическая станция, перигей, первая космическая скорость, искусственный спутник Земли.

История пилотируемой космонавтики началась 12 апреля 1961 г., когда советский летчик-космонавт Юрий Гагарин совершил первый космический полет продолжительностью 108 минут и навсегда вошел в историю развития нашей цивилизации. Это событие аккумулировало в себе титанические усилия и накопленный научно-технический потенциал ракетно-космической отрасли СССР.

В 1971 г. первый экипаж орбитальной станции "Салют" в составе космонавтов Г.Т. Добровольского, В.Н. Волкова и В.И. Пацаева погиб, возвращаясь после успешного выполнения задания. А космос продолжал собирать жертвы. В 1986 г. катастрофа с американским многоразовым космическим кораблем Challenger унесла жизни семи космонавтов.

Одной из вех, не столь трагической, но тем не менее печальной, на этом тернистом пути стала наша пилотируемая лунная программа. Начатая в 1964 г., она изначально отставала от американской, объявленной в 1961 г. и возведенной в ранг национальной. Успех этой программы стал делом каждого американца. О существовании нашей программы широкая советская общественность могла только догадываться. Ключевым элементом как отечественной, так и американской пилотируемых лунных программ являлся сверхтяжелый носитель. Для успешного осуществления перелета к Луне, посадки и возвращения на Землю требовалось вывести на низкую околоземную орбиту более 100 т полезного груза.

Американцы начали разрабатывать сверхтяжелый носитель по программе Saturn в 1958 г., а в 1961 г. уже состоялся запуск двухступенчатого варианта такого носителя. В 1963 г. было принято окончательное решение о варианте полета к Луне и выбрана трехступенчатая ракета-носитель Saturn, позволяющая выводить на низкую околоземную орбиту 139 т полезного груза и 65 т на траекторию полета к Луне. К испытаниям отечественного носителя HI, выбранного для осуществления нашей пилотируемой лунной программы, приступили только в феврале 1969 г. Масса полезного груза, который должен был выводить на низкую околоземную орбиту этот носитель, составила 70 т.

В длившейся более четырех лет лунной гонке первыми оказались американцы. В декабре 1968 г. американские астронавты на космическом корабле Аро11о-8 совершили полет по орбите вокруг Луны. Наша попытка в феврале 1969 г. проделать то же самое, но в беспилотном варианте, закончилась неудачей (падение ракеты-носителя из-за выключения двигателей). После высадки американских астронавтов на Луне в июле 1969 г. советское руководство потеряло интерес к лунной программе, а четыре подряд аварийных пуска ее основного "локомотива" - сверхтяжелой ракеты-носителя HI - окончательно похоронили отечественную пилотируемую лунную программу.

Пилотируемая экспедиция на Марс в XX в. не получила техни-ческой реализации. Однако как в США,так и в СССР рассматривались различные проекты осуществления таких экспедиций начи-ная с 1960-х гг. Так, один из проектов предусматривал использование в качестве двигателя электрореактивной установки. Масса всего марсианского комплекса могла достигать нескольких сотен тонн. Несмотря на невостребованность эти проекты явились шагом вперед в освоении космоса человеком, а созданный при их разработке научно-технический задел безусловно будет использован при подготовке будущих марсианских экспедиций. После полета Ю.А. Гагарина отечественная пилотируемая космонавтика набирала темпы, очень быстро пройдя путь от единичных краткосрочных полетов к постоянному пребыванию экипажей космонавтов на орбите.

Легендарные "Востоки" и "Восходы" быстро были заменены космическими станциями "Салют" первого поколения, позволившими обеспечить жизнедеятельность и работу орбитальных экипажей на значительное время,ограниченное лишь объемом тех запасов, которые были доставлены на космическую станцию. В это же время впервые были созданы предпосылки для перехода от рассмотрения вопроса типа "стоит ли вообще запускать человека в космос?" к проблемам уровня "а сможет ли человек долететь до Марса и далее к звездам и что для этого необходимо сделать?", поставленным в свое время еще К.Э. Циолковским.

Следствием органичного развития научно-технической мысли явилось создание станций "Салют" второго поколения, наиболее существенным отличием которых явилась отработанная система транспортного обслуживания, дающая возможность организации длительных космических полетов.

Очередным шагом в развитии советской космонавтики стало создание орбитальной станции следующего поколения - пилотируемого космического комплекса "Мир", оперативно-техническое руководство по подготовке и запуску которого осуществлял директор Машиностроительного завода им. М.В. Хруничева А.И. Киселев. "Мир" представлял собой сложную блочномодульную конструкцию, которая могла адаптироваться в полете даже к радикально изменяющимся условиям. Так, например, при проектировании комплекса "Мир" и в первые годы его полета и речи не было о стыковке комплекса с орбитальным кораблем системы Space Shuttle (в качестве основного варианта рассматривалась сты-ковка комплекса с "Бураном"), и уже в условиях космического полета комплекса были проведены его доработка и дооснащение, позволившие решить и эту задачу.

Следует отметить, что одним из итогов развития пилотируемой космонавтики XX в. явился обоснованный вывод о невозможности дальнейшего продуктивного ее развития без широкого внедрения принципа международного сотрудничества. Поэтому следующий этап развития пилотируемой космонавтики, приходящийся на XXI в., будет ознаменован органичным соединением усилий различных стран в работе над единым проектом. Программы пилотируемой космонавтики предусматривают широкую поэтапную организационно-техническую интеграцию проводимых Россией работ с национальными космическими программами США, стран Западной Европы, Японии и Канады. Федеральной космической программой предусмотрено поэтапное внедрение России в международные программы пилотируемых полетов с широким использованием опыта создания и эксплуатации отечественной орбитальной пилотируемой станции "Мир". Основными шагами на пути такого внедрения являлись:

  1. Программы полетов иностранных космонавтов в составе экипажей комплексов "Салют" и "Мир".
  2. Программа "Мир" - Shuttle (1994 - 1995 гг.), включавшая проведение совместных работ на российской станции "Мир" и американском корабле Shuttle, а также полеты российских космонавтов на корабле Shuttle и пребывание американских астронавтов на станции "Мир".
  1. Программа "Мир" - НАСА (1995 - 1997 гг.), имевшая направленность на продолжение и расширение научных исследований в интересах России и США на борту станции "Мир" с использованием кораблей "Союз ТМ" и Shuttle для реализации транспортных операций.

Несмотря на низкий уровень государственного финансирования все же удалось выполнить основной объем запланированных ра-бот. Хотя и с некоторым опозданием, но выполнены программы "Мир" - Shuttle и "Мир" - НАСА. Следующий шаг - программа Международная космическая станция (МКС), осуществляемая в настоящее время, - предусматривает создание Международной космической станции на основе результатов реализации национальных программ России и США ("Мир-2" и Freedom) с расширенными научно-техническими возможностями по проведению фундаментальных исследований и прикладных работ в космосе, связанных с обеспечением жизнедеятельности человека, космической технологией и биотехнологией, природопользованием и экологией, а также отработкой элементов перспективной космической техники.

Необходимо отметить, что стремление к лидерству отечественной космонавтики в области пилотируемого космоса, несомненно, было связано с использованием орбитального комплекса "Мир". Комплекс "Мир", первый модуль которого (базовый блок) выведен на орбиту 20 февраля 1986 г., является крупнейшим научно-техническим достижением в области пилотируемых космических полетов и освоения околоземного космического пространства. Всего по программе полета комплекса "Мир" проведено 102 успешных пуска кораблей и модулей различных типов (включая пуски американского корабля Shuttle).

Комплекс "Мир" не имеет аналогов и является абсолютным мировым рекордсменом по следующим позициям:

  • длительности эксплуатации на орбите;
  • суммарному налету космонавтов на борту комплекса;
  • многопрофильности и объемам проведенных на борту научно-технических программ и исследований;
  • числу выполненных программ в рамках международного сотрудничества, а также объему работ, проведенных на коммерческой основе.

Ресурсные характеристики и уровень международного сотрудничества комплекса "Мир" соизмеримы с соответствующими проектными характеристиками МКС. В течение почти 15 лет эксплуатации комплекса "Мир" на нем была сформирована уникальная научная лаборатория, которая вкдючала природоведческий комплекс, состоящий из блока спектрорадиометрических инструментов, астрофизическую лабораторию из шести мощных телескопов и спектрометров, технологические печи, медицинские диагностические комплексы. На базе научного комплекса проведено около 18 000 сеансов (экспериментов) по таким важнейшим направлениям исследований, как технология, биотехнология, геофизика, исследование природных ресурсов Земли и экология, астрофизика, медицина, биология, материаловедение, испытания техники и ряд других.

Реализация программы обеспечивалась многоотраслевой кооперацией работающих в области наукоемких технологий организаций и предприятий России и стран СНГ. В процессе эксплуатации комплекса "Мир" накоплен уникальный опыт, основу которого составляет долгосрочное прогнозирование технического состояния, периодическое продление срока эксплуатации и специальная, постоянно совершенствуемая технология ремонтно-восстановительных работ, включая работы в открытом космическом пространстве.

Ни в коем случае нельзя рассматривать изолированно проекты орбитального комплекса "Мир" и МКС, так как Россия делится накопленным опытом организации, обеспечения и проведения орбитальных полетов с партнерами по МКС. В последнее время в связи с участием России в создании Международной космической станции возник вопрос о целесообразности продолжения эксплуатации комплекса "Мир", ввиду того что ограниченное государственное финансирование не позволяет одновременно выполнять две масштабные программы. Кроме того, значительное превышение предусмотренного ресурса сделало дальнейшую эксплуатацию станции "Мир" небезопасной. Было принято и в марте 2001 г. осуществлено правительственное решение о прекращении существования станции, ее управляемому сходу с орбиты и затоплении в океане.

Принцип международного космического сотрудничества определяет необходимость полномасштабного участия России в программе Международной космической станции. В XXI в. этому направлению практически нет альтернативы, поскольку расходы на пилотируемую космонавтику в значительной степени стали превышать финансовые возможности одной отдельно взятой страны.

С использованием МКС будут решаться фундаментальные научные проблемы, проводиться прикладные исследования и эксперименты в интересах развития фундаментальной науки, социально-экономической сферы и международного сотрудничества. Основными задачами, решаемыми с использованием Международной космической станции, будут:

  • проведение фундаментальных исследований с целью углубления и расширения знаний о Вселенной и окружающем нас мире;
  • проведение прикладных исследований с целью получения на борту КА геофизической информации для практического использования в сельском, лесном и рыбном хозяйствах, геологии, океанографии и экологии;
  • получения опытных партий полупроводниковых материалов, сплавов, градиентных стекол для исследований и применения в электронной промышленности, атомной энергетике, лазерной технике, проекционном телевидении; получения биологически активных веществ и лекарственных препаратов для медицинской и фармацевтической промышленности, молекулярной электроники, животноводства;
  • проведение работ в рамках программ международного сотрудничества том числе на коммерческой основе;
  • проведение работ по натурной отработке элементов и систем перспективных средств ракетно-космической техники.

Ожидается, что создание этой станции позволит:

  • расширить фундаментальные научные знания в области астрофизики, геофизики и экологии, материал сведения, медицины и биологии;
  • получить высококачественные-образцы новых материалов, биологически активных веществ и медицинских препаратов для использования в электронной и радиопромышленности, оптике, медицине и биологии;
  • повысить эффективность ОКР по созданию и отработке новых видов научной аппаратуры для различных космических систем;
  • получить прирост национального продукта страны от использования новых космических технологий в промышленности и от использования информации о природных ресурсах Земли и экологической обстановке в сельском и лесном хозяйстве, геологии;
  • получить валютные поступления от реализации программ по международному сотрудничеству на коммерческой основе;
  • создать научно-технический задел для перспективных программ исследования Луны и Марса в кооперации с зарубежными странами.

В сентябре 1988 г. правительства США, государств - членов ЕКА, Японии и Канады подписали межправительственное соглашение о сотрудничестве в области разработки, эксплуатации и использования Международной космической станции. В конце 1993 г. Правительство России получило от стран, подписавших это соглашение, приглашение к сотрудничеству по МКС и приняло его.

Проект создания МКС разрабатывался с середины 1980-х гг. и ранее носил название Freedom. До 1993 г. на работы по проекту было израсходовано 11,2 млрд. дол. Однако отсутствие в нем отработанных технических средств и технологий (которыми в значительной степени обладает Россия), обеспечивающих длительное пребывание и деятельность экипажа в условиях космического полета, аварийных средств спасения и экономически оправданных средств доставки на МКС топлива и грузов превращали проект в практически не реализуемый.

Участие России в проекте создания и использования МКС делает программу МКС более устойчивой и реализуемой. Ключевыми элементами и технологиями, которые поставляет Россия, позволяющими существенно ускорить сборку МКС, являются: служебный модуль (СМ), обеспечивающий жизнедеятельность от 3 до 6 членов экипажа; грузовые корабли "Прогресс-М" и их модификации, обеспечивающие снабжение станции расходными компонентами, в том числе топливом; пилотируемые корабли типа "Союз ТМ", обеспечивающие доставку и возвращение экипажа, его аварийное спасение в непредвиденных ситуациях. Аналогов этих средств у других партнеров по МКС (в том числе США) на сегодня нет. В целом российский сегмент Международной космической станции включает в свой состав следующие элементы: модуль "Заря", служебный модуль "Звезда", стыковочные отсеки, универсальный стыковочный и стыковочно-складской модули, научно-энергетическую платформу, исследовательские модули, корабли "Союз ТМ" и "Прогресс". Для доставки на орбиту основных модулей российского сегмента МКС используется ракетахноситель "Протон".

США, государства - члены ЕКА, Канада, Япония - партнеры России по МКС - заинтересованы в ее участии в проекте, понимая, что в противном случае проект становится значительно дороже, а создание станции окажется проблематичным. Этот вывод соответствует мнению американских специалистов. 7 октября 1998 г. на заседании НАСА Дэниэл Голдин впервые публично сообщил, что НАСА может запросить у конгресса дополнительные средства на сохранение роли России в программе создания космической станции и одновременно предпринять меры по уменьшению зависимости программы от российских изделий. Голдин также сообщил, что послание такого содержания было передано в Белый дом во время обсуждения бюджетного запроса НАСА на 2000 г.

По оценкам НАСА, дополнительно потребуется 1,2 млрд. дол., чтобы осуществить план по снижению роли России в программе. В ближайшем будущем НАСА будет покупать российские услуги и изделия. В более отдаленном времени космическое агентство США намерено создать свои изделия и услуги - например, модифицировать МТКС Space Shuttle, чтобы не нуждаться в запусках нескольких российских грузовых кораблей "Прогресс". Участие же России в проекте создания МКС является самым дешевым решением на ближайшее будущее.

Включение России в 1998 г. в число партнеров по МКС способствовало в определенной степени укреплению ее позиций на постсоветском экономическом пространстве. Один из основных ее партнеров по космической деятельности в рамках СНГ - Украина выразила желание тоже участвовать в этом проекте. Украина обратилась к России с предложением о сотрудничестве в создании украинского исследовательского модуля и включении его в состав российского сегмента МКС.

Предусмотрено коммерческое использование ресурсов российского сегмента МКС. Цель коммерческой космической деятельнсти в этом направлении - компенсация части расходов на создание российского сегмента МКС, минимизация эксплуатационных расходов, использование научно-технической продукции, полученной при разработке МКС и ее эксплуатации, в других отраслях экономики для обеспечения создания и развития передовой конкурентоспособной продукции.

Коммерческий интерес для бизнеса в XXI в. также могут представлять:

  • научно-техничеёкая продукция, полученная при разработке МКС на основе последних достижений космической науки и техники;
  • всесторонняя и своевременная подготовка членов экипажа МКС (помимо российских) в Центре подготовки космонавтов им. Ю.А. Гагарина;
  • выполнение заявок партнеров по МКС на доставку полезных нагрузок;
  • подготовка наземного оборудования и персонала для обеспечения запланированных экспериментов (работ) на МКС;
  • выполнение коммерческих заказов на разработку и изготовление материальной части в обеспечение проектов, реализуемых на технической базе российского сегмента МКС.

Интеграция России в международную космическую деятельность способствует укреплению ее позиций в мировом сообществе, усилению авторитета, влияния и понимания российских интересов другими государствами. При анализе отношений с ведущими государствами в области космической деятельности необходимо все время учитывать, что совместные научные проекты, реализация российских возможностей на рынке космических услуг и выполнение Россией принятых обязательств по ограничению и контролю за распространением ракетных технологий рассматриваются зарубежными партнерами как единое целое. Нарушение любой составляющей неминуемо ведет к сокращению (или прекращению) совместных работ не только в области космоса, но и в других областях экономического сотрудничества. В этих условиях в целях сохранения и развития космического потенциала России, расширения международного сотрудничества и привлечения значительных объемов зарубежных средств в ракетно-космическую промышленность страны необходимо обеспечить своевременное выполнение международных обязательств в области космоса (в том числе по созданию МКС).

Прогнозируемый срок функционирования МКС - до 2013 г. Для ее создания требуется 100 млрд. дол., доля России в этой сумме - 6,5...6,8 млрд. дол. Вложив свою долю в создание станции, наша страна получает право на треть ее ресурсов, в том числе: 43 % от времени пребывания и численности экипажа, 20 % энергетических ресурсов, 35 % объема гермоотсеков и 44 % рабочих мест.

Создание МКС успешно реализуется: уже находятся на орбите три элемента МКС, и первый из них - функционально-грузовой блок, разработанный ГКНПЦ им. М.В. Хруничева с привлечением кооперации в составе более 240 предприятий. Его название - "Заря" - символизирует начало нового этапа сотрудничества в области международной космонавтики.

Создание модуля, который по праву можно назвать "переходным отсеком в XXI в.", проходило в сложных условиях формирования конфигурации и изменения требований к МКС. Из сформированных изначально 1100 требований к МКС более трети претерпели изменения в процессе проектирования, изготовления и испытаний. В ходе работы специалистами ГКНПЦ им. М.В. Хруничева были решены сложные научно-технические и организационные проблемы, связанные с адаптацией ФГБ к международным стандартам и выполнением функций, обеспечивающих необходимые условия для развертывания и функционирования МКС:

  • поддержанием орбиты и управлением ориентацией МКС на начальных стадиях развертывания;
  • энергоснабжениеж Международной космической станции на начальном этапе развертывания;
  • обеспечением стыковочных работ;
  • выполнением функций хранилища расходуемых материалов;
  • поддержанием функций жизнеобеспечения.

Ожидается, что в XXI в. большое внимание будет уделено развитию технологий и технических средств для осуществления "малых" орбитальных полетов. Примером такой программы является программа "Орел", предусматривающая создание малогабаритного орбитального корабля для небольших космических экипажей (в составе одного-двух человек) для решения задач по спасению космонавтов, техническому обслуживанию орбитальных средств и ряда других.

Из всех небесных тел наиболее реальным в ближайшей перспективе представляется освоение Луны. Это обусловлено ее пространственной близостью, возможностью размещения на ее поверхности лунных баз различного целевого назначения: производственных, ремонтных, добывающих, астрофизических, систем астероидной защиты и др. В связи с этим следует ожидать в XXI в. возобновления и развития пилотируемых полетов на Луну.

Можно также предполагать пилотируемые полеты к планетам Солнечной системы, прежде всего к Марсу, температурные условия которого наиболее близки земным. Экспедиция на Марс возможна в уже первой четверти XXI в.

Следует отметить, что пилотируемые полеты к другим планетам представляются весьма проблематичными в связи с их высокой стоимостью, сложностью реализации и с прогнозируемым к середине XXI столетия резким обострением глобальных земных проблем. Поэтому исследование планет Солнечной системы и дальнего космоса, повидимому, будет продолжаться с помощью автоматических межпланетных космических аппаратов и зондов.

ВЕСТНИК АКАДЕМИИ ВОЕННЫХ НАУК

Полковник Е.И.Жук,

Лауреат Государственной премии РФ,

доктор политических наук, кандидат технических наук,

старший научный сотрудник, действительный член АВН

Военно-политические аспекты пилотируемой космонавтики

Космическая деятельность с самого начала стала ареной военно-политического соперничества двух сверхдержав, продолжающегося в тех или иных формах и с переменным успехом до настоящего времени. Это соперничество особо обострилось с началом пилотируемых полетов и освоения дальнего космоса.

Ключевые слова: космическая деятельность, космонавтика, ракета военного назначения, освоение космического пространства, искусственный спутник, пилотируемый полет, лунная кабина, долговременные космические станции, мирный космос, военный космос.

С запуском первого искусственного спутника Земли (ИСЗ), 4 октября 1957 года, началось практическое освоение бескрайних просторов Вселенной. Именно в России были заложены теоретические и философские основы космической деятельности, выполнены важные инженерно-технические разработки, открывшие путь к использованию беспилотных и пилотируемых космических аппаратов. Первый ИСЗ и полет Юрия Гагарина 12 апреля 1961 года сделали нашу страну великой космической державой. Сбылись слова великого российского ученого, основоположника космонавтики К.Э. Циолковского о том, что человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство.

Проникновение в космос стало одним из величайших свершений человеческого разума в многовековой истории земной цивилизации . Открытие космической эры, первые и наиболее значительные достижения в околоземном пространстве, в исследовании Луны и ближайших планет Солнечной системы были осуществлены наиболее передовыми в экономическом и научно-техническом отношении государствами - СССР и США. Однако космическая деятельность с самого начала стала ареной соперничества двух сверхдержав, стремившихся обеспечить себе военное превосходство на земле и в космосе, добиться победы в военно-политическом и идеологическом противоборстве. Выйдя союзниками из Второй мировой войны, они сразу втянулись в изнурительную гонку ракетно-ядерных вооружений. Сброс атомных бомб на японские города Хиросиму и Нагасаки явился не столько последним актом войны с фашизмом, сколько первой большой операцией «холодной войны»1.

Поворот Вашингтона от политики сотрудничества к конфронтации с Советским Союзом был предрешен приходом в Белый дом (после смерти президента Ф. Рузвельта 12 апреля 1945 года) Г. Трумэна. Первым известным документом «холодной войны» многие историки считают «длинную телеграмму», которую 22 февраля 1946 года направил в Вашингтон поверенный в делах США в Москве Дж. Кеннан. Советский Союз представлялся в ней «неумолимой враждебной силой». Но началом «холодной войны» принято считать известное выступление У. Черчилля 5 марта 1946 года в американском городе Фултоне, где бывший английский премьер призывал объединяться и вооружаться против «советской угрозы». Идею конфронтации с СССР горячо приветствовал президент Г. Трумэн, который спустя год изложил в конгрессе основы политики мира по-американски, вошедшей в историю под названием «доктрины Трумэна». Глава Белого дома провозгласил сферой национальных интересов США практически весь земной шар, а целью политики Соединенных Штатов - поддержку свободных народов, сопротивляющихся попыткам подчинения вооруженным меньшинствам или внешнему давлению, и сопротивление «советскому экспансионизму» повсюду в мире. Важнейшей и приоритетной задачей объявлялась борьба с «советским коммунизмом»2.

С началом «холодной войны» начался и первый этап космической гонки . Политические лидеры двух государств, руководители первых космических проектов в СССР и США по-разному оценивали значение освоения космического пространства для своих стран и всего человечества, представляли масштабы, организационные формы и системы приоритетов национальных космических программ. Но при этом бесспорным остается тот факт, что бескомпромиссное соперничество за право стать первой в истории «космической державой» имело ярко выраженную военно-политическую и идеологическую подоплеку. Разворачивалась и набирала темпы жесточайшая борьба за новое лидерство в науке, технике и экономике, которое давало возможность перевести военный потенциал государства на качественно новый уровень, связанный с обладанием оружием массового поражения и средствами его доставки к целям, находящимся в любом регионе планеты, а также распространить свой контроль на космическое пространство.

Космическая тематика естественным образом исторически была тесно связана с интенсивными работами по созданию ракет военного назначения. В 1935 году будущий главный конструктор космических кораблей, а на тот момент инженер-летчик Сергей Павлович Королев писал: «Интенсивное развитие ракетного дела за последнее десятилетие, несомненно, проходит под знаком подготовки к войне»3. Однако он искренне верил, что создание ракетных двигателей откроет перспективу полета человека в космос. В 1945 году он отмечал: «Мысль об использовании ракетных аппаратов для подъема человека на большие высоты и даже для вылета его в космическое пространство известна довольно давно, так как идея самого ракетного двигателя в силу его природы и принципа действия лучше всего применима для такого рода полетов»4. Программе пилотируемых космических полетов академик Королев придавал особое значение, неизменно подчеркивая ее сложность, большую ответственность, которую несут разработчики пилотируемых космических аппаратов. Он всегда говорил, что при всех положительных сторонах использования автоматических аппаратов окончательное освоение космического пространства и планет возможно только с участием человека при обеспечении нормальных условий для созидательной работы в космосе . О планах нашей страны запустить свой первый ИСЗ мировая общественность узнала в 1956 году, когда в Барселоне на ассамблее специального комитета по проведению Международного геофизического года5 вице-президент Академии наук И.П. Бардин сообщил, что СССР намерен запустить искусственный спутник Земли, посредством которого будут проведены измерения атмосферного давления и температуры, осуществляться наблюдения космических лучей, микрометеоритов, геомагнитного поля и солнечной радиации.

Видный специалист по космонавтике К. Эрике в конце 50-х годов писал: «Совершенно очевидно, что, помимо явных политических и военных интересов, в СССР было проявлено много подлинного энтузиазма в деле проникновения в мировое пространство с помощью космических ракет, в соответствии с пророческим предвидением К.Э. Циолковского... В широком смысле история управляемых снарядов представляет собой мост между ранними идеями космического полета и его практическим воплощением, становящимся реальностью во второй половине XX столетия. Соотношение между космическим полетом и управляемым снарядом может быть несколько упрощенно выражено следующей формулой: «если бы управляемый снаряд не был создан как оружие, его было бы необходимо создать как основу космического полета». Однако в последнем случае вопрос о том, кто должен платить по счетам на многие миллиарды долларов, вероятно, остался бы открытым»6.

В 1952 году для президента Г. Трумэна был подготовлен доклад о проблеме искусственного спутника Земли, ставший впоследствии основой при разработке проекта «Авангард». В докладе содержались самые общие сведения о космическом полете и одновременно указывалось на те преимущества, которые дают государству разработка и эксплуатация ИСЗ (научные, военные и психологические). Обращалось также внимание на необходимость лидерства США в этих областях.

Для координации работ в новой области деятельности в США еще в период Первой мировой войны был создан Национальный консультативный совет по аэронавтике (НАКА), который в соответствии с законом об авиации и исследовании космического пространства 1958 года был преобразован в Национальное управление по аэронавтике и исследованию космического пространства (НАСА). В СССР закона, регламентирующего космическую деятельность, не было. Поэтому цели исследования и практического использования космического пространства вытекали в основном из соответствующих документов ЦК КПСС и Советского правительства. Закон «О космической деятельности» появился уже после распада Советского Союза - 20 августа 1993 года.

Запуск в СССР первого в истории человечества ИСЗ, а затем полет Юрия Гагарина были восприняты американским общественным мнением как акты национального унижения. Сразу же в 1957 году в США были созданы три комиссии, которые независимо друг от друга должны были оценить причины отставания и представить рекомендации относительно ответных мер. Председатель подкомитета по боевой готовности сенатор Л. Джонсон (впоследствии - президент) так охарактеризовал ситуацию: «Мы ожидали, что будем первыми в запуске спутника. Но на самом деле мы даже еще не стали вторыми... Победил Советский Союз»7. Позже по поводу мотивов в соревновании с СССР в области космических исследований он отмечал: «Римская империя контролировала мир потому, что сумела построить дороги. Затем, когда началось освоение морских пространств, Британская империя доминировала в мире, так как имела корабли. В век авиации мы были могущественны, поскольку имели в своем распоряжении самолеты. Сейчас коммунисты захватили плацдарм в космосе»8. Его формула «кто владеет космосом - тот владеет всем миром» была воспринята политическим и военным руководством, а также всей американской общественностью как руководство к практическим действиям. Этот девиз стал основным для американских военных стратегов не только в начале 60-х годов, но и сохранил свою актуальность на современном этапе исторического развития.

После поражения на первом этапе освоения космического пространства США сконцентрировали свои главные усилия на поисках путей и средств формирования и эффективной реализации космической программы, способ-Ной в кратчайшие сроки ликвидировать отставание от Советского Союза и обеспечить им неоспоримое лидерство в исследовании и использовании космического пространства. Военное ведомство и связанные с ним исследовательские центры принялись за разработку перспективных проектов превращения космического пространства в новый театр военных действий. Особое внимание при этом отводилось лунной программе. В послании президента Дж. Кеннеди от 25 мая 1961 года говорилось, что США посвящают себя достижению следующей цели: до конца этого десятилетия высадить человека на Луну и благополучно вернуть его на Землю. Его решение было воспринято многими военными стратегами как стимул к разработке проектов по созданию военной базы на Луне. Свой замысел они предлагали осуществить в пять этапов: доставка на Землю образцов лунного грунта (ноябрь 1964); первая высадка на Луне и возвращение экипажа на Землю (август 1967); временная база на лунной поверхности (ноябрь 1967); завершение строительства лунной базы на 21 человека (декабрь 1968) и ввод ее в эксплуатацию (июнь 1969). В силу исторических обстоятельств военные проекты освоения Луны не были реализованы.

Решение президента Кеннеди было воплощено лишь в проекте «Аполлон» по осуществлению пилотируемых космических полетов на Луну. Испытательные полеты кораблей «Аполлон» начались в беспилотном варианте 28 мая 1964 года. Первый пилотируемый полет был осуществлен на корабле «Аполлон-7», выведенном на орбиту ИСЗ 11 октября 1968 года. 16 июля 1969 года к Луне стартовал «Аполлон-11». 20 июля лунная кабина совершила посадку на Луну, и 21 июля Н. Армстронг впервые в истории человечества вступил на лунную поверхность.

Воодушевленное исторической победой в «лунной гонке», руководство НАСА в сентябре 1969 года направило доклад специальному комитету по космосу при президенте США, в котором подводились первые итоги американской космической программы в области «мирного» космоса и содержались предложения по программе работ на ближайшие годы: продолжить По-Леты по программе «Аполлон» (1970-1972); начать строительство обитаемой базы-станции на Луне (1980-1983); к 1977 году создать первую обитаемую станцию на околоземной орбите; в будущем осуществить космические полеты к ближайшим планетам - Марсу и Венере, а затем к Юпитеру и другим планетам Солнечной системы. Предложенная грандиозная космическая программа в целом так и не была выполнена, однако американцам удалось до декабря 1972 года отправить еще шесть лунных экспедиций.

К сожалению, нога советского человека так и не ступила на поверхность Луны. Наша лунная программа, начатая еще при С.П. Королеве, из-за аварий так и не была реализована. Четвертая (и последняя) попытка запуска ракеты Н-1 была предпринята 23 ноября 1972 года, а в феврале 1976 года в соответствии с решением ЦК КПСС и Совета Министров все работы по этому проекту были прекращены.

Выиграв «лунную гонку», американцы переориентировали космическую программу на создание и эксплуатацию долговременных орбитальных станций . Первая и единственная американская орбитальная станция «Скайлэб» была выведена на орбиту 14 мая 1973 года. На ней в течение года последовательно отработали три длительные экспедиции. После возвращения последней в феврале 1974 года работы со станцией были прекращены, а основное внимание было сосредоточено на проекте многоразовой транспортной космической системы «Спейс шаттл».

Проект «Спейс шаттл» был объявлен президентом Р. Никсоном в марте 1970 года. В отличие от предыдущих космических программ работы в данном направлении велись нормальными темпами и не ускорялись по политическим или идеологическим соображениям. Поэтому не случайно первый полет Шаттла состоялся спустя десять лет - только 12 апреля 1981 года. В ходе развития программы проявилась важная тенденция выравнивания, пересечения усилий в создании космической техники гражданского и военного назначения. При этом повысилась активность министерства обороны в поисках средств и методов более широкого использования в своих интересах космической техники, находящейся в распоряжении НАСА и других гражданских ведомств. Если в прошлом министерство обороны пыталось получить возможность создавать пилотируемые системы исключительно военного назначения, то в проекте «Спейс шаттл» ему удалось добиться долевого участия в финансировании и одновременно самого высокого удельного веса своих интересов в перспективных планах эксплуатации кораблей многоразового применения. Практически во всех полетах астронавты выполняли большой объем экспериментов в интересах военного ведомства, а начиная с 15-го полета, выполненного по секретной программе министерства обороны, стали регулярно планироваться космические полеты исключительно в военных целях. По собственному признанию американцев, многоразовая транспортная система «Спейс шаттл» экономически не оправдывает возлагающихся на нее надежд. По стоимости вывода в космос полезных грузов система проигрывает одноразовым ракетам-носителям9.

Решение о создании в Советском Союзе многоразовой космической системы появилось значительно позже: постановление ЦК КПСС и Совета Министров СССР «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплекса и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой 200 километров полезных грузов массой до 30 тонн и возвращение с орбиты грузов массой до 20 тонн» было принято в феврале 1976 года с одновременным закрытием всех работ по лунной программе.

Работы над программой «Энергия» - «Буран» потребовали громадной концентрации сил всей страны, но проект фактически оказался незавершенным. Многоразовый орбитальный корабль «Буран» первый и последний раз взлетел 15 ноября 1988 года. В беспилотном режиме, дважды обогнув земной шар, он приземлился на аэродром при сильнейшем боковом ветре с очень высокой точностью. Советский Союз доказал, что многоразовый ракетно-космический комплекс «Энергия» - «Буран» технически не уступает, а по некоторым параметрам и превосходит американский «Спейс шаттл». Закрыв свою лунную программу и втянувшись в очередную космическую гонку, СССР вложил в невостребованную многоразовую космическую систему «Энергия» - «Буран» огромные средства, которых так не хватало на развитие орбитальных научно-исследовательских комплексов.

Принятие в конце 60-х годов программы по разработке долговременных орбитальных станций типа «Салют», послуживших в дальнейшем научно-технической базой для орбитального научно-исследовательского комплекса «Мир», обусловливалось прежде всего успехами американцев в реализации пилотируемых полетов на Луну. Проект орбитальной станции, работы по которому проводились под руководством В.Н. Челомея, получил наименование «Алмаз». В проекте, разрабатывавшемся по техническому заданию Министерства обороны, предполагалось, что пилотируемая космическая станция «Алмаз» станет более совершенной для ведения космической разведки, чем беспилотные космические аппараты-разведчики. Для этого станция оснащалась бортовым разведывательным комплексом и лучшей на тот период времени системой датчиков, сопряженных с ЭВМ. Ее макеты появились уже в 1968 году. Однако в дальнейшем было принято решение о разработке «гражданских» космических лабораторий - долговременных орбитальных станций (ДОС) на базе уже созданных образцов «военной» станции «Алмаз». Первая ДОС успешно стартовала 19 апреля 1971 года и получила название «Салют». 7 февраля 1991 года последняя станция «Салют-7» вошла в плотные слои атмосферы и прекратила свое существование, а на орбите остался уникальный орбитальный научно-исследовательский пилотируемый космический комплекс «Мир», базовый блок которого был выведен 20 февраля 1986 года. История орбитального комплекса «Мир» закончилась спустя 15 лет, когда 23 марта 2001 года он был затоплен в южной части Тихого океана.

С помощью орбитальных станций «Салют» и «Мир» была осуществлена уникальная программа поэтапного обживания человеком околоземного космического пространства. Начиная со станции «Салют-6», советская космонавтика прочно заняла лидирующие позиции в области длительных космических полетов, а также по реализации международных космических программ . Орбитальный комплекс «Мир» стал настоящим летным полигоном для проверки многих технических решений и технологических процессов, используемых в настоящее время на международной космической станции. Во многом благодаря осуществлению космической программы орбитального комплекса «Мир» роль России в этом проекте сразу же стала во многом ведущей. Пройдя непростой этап противостояния двух сверхдержав в космосе, пилотируемая космонавтика на современном этапе наконец-то вышла на путь взаимовыгодного сотрудничества . В настоящее время идет успешная реализация проекта по международной космической станции. В соответствии с Соглашением между Российской Федерацией и Соединенными Штатами от 26 октября 1998 года предусматривается возможность использования как Россией, так и США собственных элементов международной космической станции в интересах национальной безопасности своих государств.

На рубеже тысячелетий Америка пересмотрела свою космическую политику, и в 1996 году появилась президентская директива ПДД-49 «Национальная космическая политика», согласно которой в 1999 году была разработана директива министра обороны США № 3100.00 «Космическая политика», предусматривающая: учет новых подходов и политических установок в соответствии с президентской директивой; отражение основных изменений в системе обеспечения международной безопасности, новых аспектов стратегии национальной безопасности и военной стратегии, изменений в формировании бюджета национальной обороны, в структуре вооруженных сил, опыта использования космических сил в боевых условиях, расширяющегося использования космических средств в глобальном масштабе, распространения технологий и информации, развития военных и информационных технологий, активизации коммерческой деятельности в космосе, расширения кооперации между гражданскими и военными секторами и международного сотрудничества; выработку структуры всеобъемлющей политики по осуществлению космической или связанной с космосом деятельности.

В современной военной политике США космос рассматривается такой же средой, как суша, море или воздух, в которой будут осуществляться боевые операции в интересах обеспечения национальной безопасности Соединенных Штатов. Приоритетными задачами космической и связанной с космосом деятельности являются обеспечение статуса свободы космоса и защита в нем интересов национальной безопасности США. В принятой космической политике важная роль отводится пилотируемой космонавтике: «Уникальные возможности, связанные с присутствием человека в космосе, могут быть в максимальной степени использованы практически для проведения в космосе исследований, разработок, испытаний и оценки параметров систем, а также более эффективного решения текущих и перспективных задач в интересах обеспечения национальной безопасности. Это охватывает также и возможность выполнения человеком в космосе задач военного характера, являющихся уникальными по сути или предпочтительными по критерию стоимость-эффективность для обеспечения боевых действий войск»10.

Принципы национальной космической политики, изложенные в ПДД-49, в дальнейшем были пересмотрены новой администрацией Белого дома. Именно таков смысл президентской директивы № 15 от 28 июня 2002 года, в соответствии с которой совет национальной безопасности и департамент науки и техники должны были рассмотреть текущую космическую политику и выработать рекомендации по ее коррекции. В настоящее время пилотируемая космонавтика США взяла курс на дальнейшее освоение околоземного пространства и ближайших планет Солнечной системы. Космическая деятельность в России отнесена к категории высших государственных приоритетов. Главным нормативно-правовым актом является Закон РФ «О космической деятельности» от 20 августа 1993 года с изменениями и дополнениями от 29 ноября 1996 года. Он регламентирует все основные стороны космической деятельности в России и увязан с требованиями международного права.

К основополагающим документам по осуществлению космической политики относятся «Основы политики Российской Федерации в области космической деятельности на период до 2010 года», утвержденные Президентом РФ В.В. Путиным 6 февраля 2001 года, и Концепция национальной космической политики Российской Федерации, утвержденная Постановлением Правительства РФ от 1 мая 1996 года. В них подчеркивается, что главными целями национальной космической политики на современном этапе являются: сохранение Россией статуса великой космической державы; эффективное использование и укрепление космического потенциала Российской Федерации в интересах развития науки и техники, повышения экономической и оборонной мощи страны; активное участие в международном сотрудничестве в области космической деятельности, направленном на решение глобальных проблем человечества.

Итак, военно-политический анализ развития пилотируемой космонавтики убедительно доказывает, что она была, есть и будет одним из важнейших факторов мирового развития и обеспечения национальной безопасности Российской Федерации. Ракетно-космическая отрасль, тесно и неразрывно связанная с наукой, доказала свою жизнеспособность даже в условиях глубокого экономического кризиса. Поэтому отечественной пилотируемой космонавтике сегодня, когда взят курс на освоение Луны и Марса, необходимо уделять самое пристальное внимание и делать все необходимое для ее развития.

Примечания:

    Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. М.: Машиностроение. 2002. С. 16.

    Стародубов В.П. Супердержавы XX века. Стратегическое противоборство. М.: ОЛМА-ПРЕСС, 2001. С. 33-53; Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. 2002. С. 9-21.

    Творческое наследие академика Сергея Павловича Королева: Избранные труды и документы. М.: Наука, 1980. С. 70.

    Хозин ПС. Великое противостояние в космосе (СССР - США). Свидетельства очевидца. М: Ве-че, 2001. С. 29.

    Международный геофизический год с участием ученых из 67 стран был организован Международным советом научных союзов ЮНЕСКО и продолжался с 1 июля 1957 года по 31 декабря 1958 года; основные пункты его научной программы по своим масштабам носили глобальный, планетарный характер.

    Эрике К.А. Космический полет: В 2 т. Т. 1 / Пер. с англ.: Ehricke Krafft A. Space Flight. Princeton, New Jer-sey - Toronto - New York - London. 1960. M.: Изд-во физ.-мат. литры, 1963. С. 71.

    U.S. News and World Report. January 31. 1958. P. 56-57.

    Wolfe Т. The Right Stuff. N.Y., 1980. P. 57.

    Черток Б. Е. Ракеты и люди. Лунная гонка. М.: Машиностроение, 1999. С. 506.