Картографическая проекция. Виды искажений в картографических проекциях

Классификации картографических проекций

По характеру искажений проекции делятся на равноугольные, равновеликие и произвольные.

Равноугольные (или конформные) проекции сохраняют величину углов и формы бесконечно малых фигур . Масштаб длин в каждой точке постоянен по всем направлениям (что обеспечивается закономерным увеличением расстояний между соседними параллелями по меридиану) и зависит только от положения точки. Эллипсы искажений выражаются окружностями различных радиусов.

Для каждой точки в равноугольных проекциях справедливы зависимости:

/ L i = a = b = m = n; а> = 0°; 0 = 90°; k = 1 и а 0 =0° (или ±90°).

Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту (например, при решении навигационных задач).

Равновеликие (или эквивалентные) проекции не искажают площади . В этих проекциях площади эллипсов искажений равны . Увеличение масштаба длин по одной оси эллипса искажений компенсируется уменьшением масштаба длин по другой оси, что вызывает закономерное уменьшение расстояний между соседними параллелями по меридиану и, как следствие, - сильное искажение форм.

Такие проекции удобны для измерения площадей объектов (что, например, существенно для некоторых экономических или морфометрических карт).

В теории математической картографии доказывается, что нет, и не может быть проекции, которая была бы одновременно и равноугольной, и равновеликой . Вообще, чем больше искажения углов, тем меньше искажения площадей и наоборот

Произвольные проекции искажают и углы, и площади . При их построении стремятся найти наиболее выгодное для каждого конкретного случая распределение искажений, достигая как бы некоторого компромисса. Эта группа проекций используется в случаях, когда чрезмерные искажения углов и площадей одинаково нежелательны . По своим свойствам произвольные проекции лежат между равноугольными и равновеликими . Среди них можно выделить равнопромежуточные (или эквидистантные) проекции, во всех точках которых масштаб по одному из главных направлений постоянен и равен главному.

Классификация картографических проекций по виду вспомогательной геометрической поверхности .

По виду вспомогательной геометрической поверхности различают проекции: цилиндрические, азимутальные и конические.

Цилиндрическими называют проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) цилиндра, а затем цилиндр разрезается по образующей и развертывается в плоскость (рис. 6).

Рис.6. Нормальная цилиндрическая проекция

Искажения отсутствуют на линии касания и минимальны вблизи нее. Если цилиндр секущий, то имеется две линии касания, а значит 2 ЛНИ. Между ЛНИ искажения минимальны.

В зависимости от ориентировки цилиндра относительно оси земного эллипсоида различают проекции:

– нормальные, когда ось цилиндра совпадает с малой осью земного эллипсоида; меридианы в этом случае представляют собой равноотстоящие параллельные прямые, а параллели – прямые, им перпендикулярные линии;

– поперечные, когда ось цилиндра лежит в плоскости экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (рис. в).

– косые, когда ось цилиндра составляет с осью эллипсоида острый угол; в косых цилиндрических проекциях меридианы и параллели – кривые линии.

Азимутальными называют проекции, в которых сеть меридианов и параллелей переносится с поверхности эллипсоида на касательную (или секущую) плоскость (рис.7).

Рис. 7. Нормальная азимутальная проекция

Изображение около точки касания (или линии сечения) плоскости земного эллипсоида почти совсем не искажается. Точка касания является точкой нулевых искажений.

В зависимости от положения точки касания плоскости на поверхности земного эллипсоида среди азимутальных проекций различают:

– нормальные, или полярные, когда плоскость касается Земли в одном из полюсов; вид сетки: меридианы – прямые линии, радиально расходящиеся из полюса, параллели – концентрические окружности с центрами в полюсе (рис. 7);

– поперечные, или экваториальные, когда плоскость касается эллипсоида в одной из точек экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (в некоторых случаях параллели изображаются прямыми линиями;

косые, или горизонтные, когда плоскость касается эллипсоида в какой-либо точке, лежащей между полюсом и экватором. В косых проекциях только средний меридиан, на котором расположена точка касания, представляет собой прямую, остальные меридианы и параллели – кривые линии.

Коническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) конуса (рис. 8).

Рис. 8. Нормальная коническая проекция

Искажения мало ощутимы вдоль линии касания или двух линий сечения конуса земного эллипсоида, которые являются линией (линиями) нулевых искажений ЛНИ. Подобно цилиндрическим конические проекции делятся на:

– нормальные, когда ось конуса совпадает с малой осью земного эллипсоида; меридианы в этих проекциях представлены прямыми линиями, расходящимися из вершины конуса, а параллели – дугами концентрических окружностей.

– поперечные, когда ось конуса лежит в плоскости экватора; вид сетки: средний меридиан и параллель касания – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии;

– косые, когда ось конуса составляет с осью эллипсоида острый угол; в косых конических проекциях меридианы и параллели – кривые линии.

В нормальных цилиндрических, азимутальных и конических проекциях картографическая сетка ортогональна – меридианы и параллели пересекаются под прямыми углами, что является одним из важных диагностических признаков этих проекций.

Если при получении цилиндрических, азимутальных и конических проекций использовать геометрический метод (линейное проектирование вспомогательной поверхности на плоскость), то такие проекции называют перспективно-цилиндрическими, перспективно-азимутальными (обыкновенными перспективными) и перспективно-коническими соответственно.

Поликоническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковые поверхности нескольких конусов, каждый из которых разрезается по образующей и развертывается в плоскость. В поликонических проекциях параллели изображаются дугами эксцентрических окружностей, центральный меридиан представляет собой прямую, все остальные меридианы – кривые линии, симметричные относительно центральному.

Условными называются проекции, при построении которых не прибегают к использованию вспомогательных геометрических поверхностей. Сеть меридианов и параллелей строят по какому-нибудь заранее заданному условию. Среди условных проекций можно выделитьпсевдоцилиндрические , псевдоазимутальные и псевдоконические проекции, сохраняющие от исходных цилиндрических, азимутальных и конических проекций вид параллелей. В этих проекцияхсредний меридиан – прямая линия, остальные меридианы – кривые линии .

К условным проекциям относятся также многогранные проекции , которые получают путем проектирования на поверхность многогранника, касающегося или секущего земной эллипсоид. Каждая грань представляет собой равнобочную трапецию (реже – шестиугольники, квадраты, ромбы). Разновидностью многогранных проекций являются многополосные проекции , причем полосы могут нарезаться и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Основное неудобство многогранных проекций состоит в невозможности совмещения блока листов карт по общим рамкам без разрывов.

Практически ценным является подразделение по территориальному охвату. По территориальному охвату выделяются картографические проекции для карт мира, полушарий, материков и океанов, карт отдельных государств и их частей. По этому принципу построены таблицы-определители картографических проекций. Кроме того, в последнее время предпринимаются попытки к разработке генетических классификаций картографических проекций, построенных на виде описывающих их дифференциальных уравнений. Эти классификации охватывают все возможное множество проекций, но являются крайне ненаглядными, т.к. не связаны с видом сетки меридианов и параллелей.

Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

Карта — плоское, искаженное изображение земной поверхности, на котором искажения подчинены определенному математическому закону.
Положение любой точки на плоскости может быть определено пересечением двух координатных линий, которые однозначно соответствовали бы координатным линиям на Земле (?, ?). Отсюда следует, что для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере. Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.
Картографическая сетка — условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.
Картографическая проекция — способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.
Картографические проекции по характеру искажений делятся на:
1. Равноугольные (конформные) = проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением? и?. Отношение площадей не сохраняется (о. Гренландия? Африке, SАфр. ? 13,8 Sо.Гренландия).
2. Равновеликие (эквивалентные) — проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям в натуре. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.
3. Произвольные — проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости. Ортодромическая проекция — дуга большого круга изображается прямой линией.

Картографические проекции по способу построения картографической сетки делятся на:
1. Цилиндрические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.
Прямая цилиндрическая проекция — ось цилиндра совпадает с осью Земли;
Поперечная цилиндрическая проекция — ось цилиндра перпендикулярна оси Земли;
Косая цилиндрическая проекция — ось цилиндра расположена к оси Земли под углом отличным от 0° и 90°.
2. Конические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность конуса, касающегося условного глобуса (или секущего его), с последующей разверткой этого конуса на плоскость. В зависимости от положения конуса относительно оси Земли различают:
Прямую коническую проекцию — ось конуса совпадает с осью Земли;
Поперечную коническую проекцию — ось конуса перпендикулярна оси Земли;
Косую коническую проекцию — ось конуса расположена к оси Земли под углом отличным от 0° и 90°.
3. Азимутальные — проекции, в которых меридианы — радиальные прямые, исходящие из одной точки (центральной), под углами равными соответствующим углам в натуре, а параллели?-концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние, стереографические, центральные, полярные, экваториальные, горизонтные).
Меркаторская проекция
Предложенная Меркатором проекция относится к разряду нормальных цилиндрических равноугольных проекций.
Карты, построенные в этой проекции, называются меркаторскими, а проекция — проекция Меркатора или меркаторская проекция.
В меркаторской проекции все меридианы и параллели прямые и взаимноперпендикулярные линии, а линейная величина каждого градуса широты постепенно увеличивается с возрастанием широты, соответственно растягиванию параллелей, которые все в этой проекции по длине равны экватору.
Проекция Меркатора по характеру искажений относится к классу равноугольных.
Для получения морской навигационной карты в проекции Меркатора условный глобус помещают внутрь касательного цилиндра таким образом, чтобы их оси совпали.
Затем проецируют из центра глобуса меридианы на внутренние стенки цилиндра. При этом все меридианы изобразятся прямыми, параллельными между собой и перпендикулярными экватору линиями. Расстояния между ними равны расстояниям между теми же меридианами по экватору глобуса. Все параллели растянутся до величины экватора. При этом параллели, ближайшие к экватору, растянутся на меньшую величину и по мере удаления от экватора и приближения к полюсу величина их растяжения увеличивается.
Закон растяжения параллелей (рис. 1).

а) б) в)
Рис. 1. Закон растяжения параллелей
R и r – радиус Земли и произвольной параллели (СС?).
? – широта произвольной параллели (СС?).
Из прямоугольного треугольника ОС?К получим:
R = r sec?
Обе части равенства умножим на 2?, получим:
2? R = 2? r sec?
где 2? R – длина экватора;
2? r – длина параллели в широте?.
Следовательно, длина экватора равна длине соответствующей параллели, умноженной на секанс широты этой параллели. Все параллели, удлиняясь до длины экватора, растягиваются пропорционально sec?.
Разрезав цилиндр по одной из образующих, и развернув его на плоскость, получим сетку взаимно перпендикулярных меридианов и параллелей (рис. 1б).
Эта сетка не удовлетворяет требованию равноугольности, т.к. изменились расстояния между меридианами по параллели, ибо каждая параллель растянулась и стала равной длине экватора. В результате фигуры с поверхности Земли перенесутся на сетку в искаженном виде. Углы в природе не будут соответствовать углам на сетке.
Очевидно, для того, чтобы не было искажений, т.е. чтобы сохранить на карте подобие фигур, а следовательно, и равенство углов, необходимо все меридианы в каждой точке растянуть на столько, на сколько растянулись в данной точке параллели, т.е. пропорционально sec?. При этом эллипс на проекции вытянется в направлении малой полуоси и станет кругом, подобным острову круглой формы на поверхности Земли. Радиус круга станет равным большой полуоси эллипса, т.е. будет в sec? раз больше круга на поверхности Земли (рис. 1в).
Полученная таким образом картографическая сетка и проекция будут полностью удовлетворять требованиям, предъявленным к морским навигационным картам, т.е. проекцией Меркатора.
Поперечная цилиндрическая проекция
Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для?Г > 75?80°N(S).
Как и нормальная цилиндрическая проекция Меркатора, эта проекция является равноугольной (не искажает углы).
При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом (рис. 2):

Рис. 2. Поперечная цилиндрическая проекция
? Северный полюс условно помещается в точку с координатами: ?Г = 0°, ?Г = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: ?Г = 0°, ?Г = 0° (р-н Гвинейского залива).
Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.
? Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.
Координатными осями этой системы будут:
1. начальный квазимеридиан – большой круг, проходящий через северный географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (?Г = 0° и?Г = 180°) Гринвичским (начальным) меридианом;
2. квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: ?Г = 90°Е (р-н Индийского океана) и?Г = 90°W (р-н Галапагоских островов).
Координатными линиями этой системы являются:
3. квазимеридианы – большие круги, проходящие через квазиполюсы;
4. квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.
Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (?q) и квазидолготой (?q).
? Квазиширота (?q) — угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq — + ?q и к PSq — –?q от 0° до 90°.
? Квазидолгота (?q) — двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+?q) и к западу (–?q) от 0° до 180°.
Началом отсчета квазигеографических координат является географический северный полюс (т. PN).
Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R ?q; m = n = sec ?q
где

– радиус Земли (м);
m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74?.
Для эллипсоида Красовского: а = 6378245 м.
Переход от географических координат к квазикоординатам выполняется по формулам:
sin ?q = ?cos ? cos ?; tg ?q = ctg ? sin ?
sin ? = ?cos ?q cos ?q; tg ? = ?ctg ?q sin ?q
Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 3).

Рис. 3. Квазилоксодромия
Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.
Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.
Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.
Главный масштаб карт и карт-сеток относят к квазиэкватору.
Географические меридианы изображаются кривыми, близкими к прямым линиям.
Географические параллели изображаются кривыми линиями, близкими к окружностям.
Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).
Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 2).

Кq = ИК? Q
В широтах >80°, когда соs ?q ? 1, получим:
sin Q = sin ?
т.е. в высоких широтах угол перехода практически равен долготе точки.
Прокладка курса на такой карте относительно географических или квазигеографических меридианов осуществляется по формуле:
ИК = Кq + ?; Кq = ИК? ?
Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.
Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.
По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при?q ? 15° ее можно принимать за кратчайшую линию).
Уравнение квазилоксодромии:
?q2 ? ?q1 = tg Кq (Dq2 ? Dq1)
где?q2 ? ?q1 – разность квазидолгот точек;
Dq2 ? Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).
Если известен главный масштаб карты или карты-сетки
МГ = 1: CГ
по квазиэкватору, то частный масштаб
МТ = 1: CТ
в точке с квазиширотой?q вычисляется по формуле:
МТ = МГ sec ?qТ
или
CТ = CГ cos ?qТ
(масштаб карт увеличивается по мере удаления от квазиэкватора).
Перспективные картографические проекции
Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).
Эти проекции представляют собой частный случай азимутальных проекций.
(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 4. Перспективные проекции
В перспективных проекциях (рис. 4) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).
Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.
Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.
Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).
В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях? от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.
Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.
В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ — в т. О1).
Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.
В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 5):
a. нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 5а);
b. экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 5б);
c. косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 5в).

а) б) в)
Рис. 5. Гномонические проекции
Общие свойства карт в гномонической проекции:
1) большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.
Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;
2) отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.
Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.
В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 4), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.
Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.
Равноугольная картографическая проекция Гаусса
Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.
Основной картографической сеткой этой проекции является сетка прямоугольных координат.
В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 6. Равноугольная проекция Гаусса
Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 6) получают в пересечении 2-х координатных линий:
1. дуги эллипса nAn?, параллельной осевому меридиану зоны и
2. кратчайшей линии АА?, проведенной из данной точки А перпендикулярно осевому меридиану.
За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.
Удаление точки А? (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn? от осевого меридиана – ординатой У.
Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» — к N).
Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).
Для определения отечественного номера зоны, в которой расположена заданная точка с долготой?, применяют формулу:
n = (? + 3°)/6
(ближайшее целое число от 1 до 60).
Деление долготы? производится до ближайшего целого числа (для? = 55°Е? n = 10).
Для вычисления долготы L0 осевого меридиана зоны применяют формулу:
L0 = 6 n ? 3°
(для n = 10 ? L0 = 57°Е).
N – международная нумерация зон (от меридиана 180° к востоку).
Для?E: N = n + 30 и n = N – 30 (для восточного полушария).
Для?W: N = n – 30 и n = N + 30 (для западного полушария).
В табл. 2.31а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота (?0) осевого меридиана? см. табл. 10.1.
Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.
Граничными линиями карты в проекции Гаусса служат меридианы и параллели.
Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.
Этим координатам соответствуют километровые линии:
Х = const – параллельна экватору, и
У = const – параллельная осевому меридиану зоны.
Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:
X = f1 (?,l); Y = f2 (?,l)
где l – разность долгот заданной точки и осевого меридиана, т.е.
l = ? ? L0
Вид функций f1 и f2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.
Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.
Километровые линии (X = const и У = const) ? два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.
Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.
(При Х = 6656 и У = 23612 ? заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически? 112 км к Е).
Прямоугольные координаты Х и У выражают обычно в метрах.
Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.
Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.
Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (?) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const
Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.
При известных координатах? и? заданной точки угол? вычисляется по формуле:
? = (? ? L0) sin ?
где L0 – долгота осевого меридиана зоны.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.
Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.
Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33).

В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.

В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb", сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.

Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции PN под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.

Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность - ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Картографические проекции

отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую-либо её части на плоскость, получаемые в основном с целью построения карты.

Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно земной эллипсоид в М раз, например в 10 000 000 раз, получают его геометрическую модель - Глобус , изображение которого уже в натуральную величину на плоскости даёт карту поверхности этого эллипсоида. Величина 1: М (в примере 1: 10 000 000) определяет главный, или общий, масштаб карты. Т. к. поверхности эллипсоида и шара не могут быть развёрнуты на плоскость без разрывов и складок (они не принадлежат к классу развёртывающихся поверхностей (См. Развёртывающаяся поверхность)), любой К. п. присущи искажения длин линий, углов и т.п., свойственные всякой карте. Основной характеристикой К. п. в любой её точке является частный масштаб μ. Это - величина, обратная отношению бесконечно малого отрезка ds на земном эллипсоиде к его изображению на плоскости: μ min ≤ μ ≤ μ max , и равенство здесь возможно лишь в отдельных точках или вдоль некоторых линий на карте. Т. о., главный масштаб карты характеризует её только в общих чертах, в некотором осреднённом виде. Отношение μ/М называют относительным масштабом, или увеличением длины, разность М = 1.

Общие сведения. Теория К. п. - Математическая картография - имеет своей целью изучение всех видов искажений отображений поверхности земного эллипсоида на плоскость и разработку методов построения таких проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения или заранее заданное распределение.

Исходя из нужд картографии (См. Картография), в теории К. п. рассматривают отображения поверхности земного эллипсоида на плоскость. Т. к. земной эллипсоид имеет малое сжатие, и его поверхность незначительно отступает от сферы, а также в связи с тем, что К. п. необходимы для составления карт в средних и мелких масштабах (М > 1 000 000), то часто ограничиваются рассмотрением отображений на плоскость сферы некоторого радиуса R , отклонениями которой от эллипсоида можно пренебречь или каким-либо способом учесть. Поэтому далее имеются в виду отображения на плоскость хОу сферы, отнесённой к географическим координатам φ (широта) и λ (долгота).

Уравнения любой К. п. имеют вид

x = f 1 (φ, λ), y = f 2 (φ, λ) , (1)

где f 1 и f 2 - функции, удовлетворяющие некоторым общим условиям. Изображения меридианов λ = const и параллелей φ = const в данной К. п. образуют картографическую сетку. К. п. может быть определена также двумя уравнениями, в которых фигурируют не прямоугольные координаты х , у плоскости, а какие-либо иные. Некоторые К. п. [например, Перспективные проекции (в частности, ортографические, рис. 2 ) перспективно-цилиндрические (рис. 7 ) и др.] можно определить геометрическими построениями. К. п. определяют также правилом построения соответствующей ей картографической сетки или такими её характеристическими свойствами, из которых могут быть получены уравнения вида (1), полностью определяющие проекцию.

Краткие исторические сведения. Развитие теории К. п., как и всей картографии, тесно связано с развитием геодезии, астрономии, географии, математики. Научные основы картографии были заложены в Древней Греции (6-1 вв. до н. э.). Древнейшей К. п. считается Гномоническая проекция , примененная Фалесом Милетским к построению карт звёздного неба. После установления в 3 в. до н. э. шарообразности Земли К. п. стали изобретаться и использоваться при составлении географических карт (Гиппарх , Птолемей и др.). Значительный подъём картографии в 16 в., вызванный Великими географическими открытиями, привёл к созданию ряда новых проекций; одна из них, предложенная Г. Меркатор ом, используется и в настоящее время (см. Меркатора проекция). В 17-18 вв., когда широкая организация топографических съёмок стала поставлять достоверный материал для составления карт на значительной территории, К. п. разрабатывались как основа для топографических карт (французский картограф Р. Бонн, Дж. Д. Кассини), а также выполнялись исследования отдельных наиболее важных групп К. п. (И. Ламберт , Л. Эйлер , Ж. Лагранж и др.). Развитие военной картографии и дальнейшее увеличение объёма топографических работ в 19 в. потребовали обеспечения математической основы крупномасштабных карт и введения системы прямоугольных координат на базе, более подходящей К. п. Это привело К. Гаусс а к разработке фундаментальной геодезической проекции (См. Геодезические проекции). Наконец, в середине 19 в. А. Тиссо (Франция) дал общую теорию искажений К. п. Развитие теории К. п. в России было тесно связано с запросами практики и дало много оригинальных результатов (Л. Эйлер, Ф. И. Шуберт , П. Л. Чебышев , Д. А. Граве и др.). В трудах советских картографов В. В. Каврайского (См. Каврайский), Н. А. Урмаев а и др. разработаны новые группы К. и., отдельные их варианты (до стадии практического использования), важные вопросы общей теории К. п., классификации их и др.

Теория искажений. Искажения в бесконечно малой области около какой-либо точки проекции подчиняются некоторым общим законам. Во всякой точке карты в проекции, не являющейся равноугольной (см. ниже), существуют два таких взаимно перпендикулярных направления, которым на отображаемой поверхности соответствуют также взаимно перпендикулярные направления, это - так называемые главные направления отображения. Масштабы по этим направлениям (главные масштабы) имеют экстремальные значения: μ max = а и μ min = b . Если в какой-либо проекции меридианы и параллели на карте пересекаются под прямым углом, то их направления и есть главные для данной проекции. Искажение длины в данной точке проекции наглядно представляет эллипс искажений, подобный и подобно расположенный изображению бесконечно малой окружности, описанной вокруг соответствующей точки отображаемой поверхности. Полудиаметры этого эллипса численно равны частным масштабам в данной точке в соответствующих направлениях, полуоси эллипса равны экстремальным масштабам, а направления их - главные.

Связь между элементами эллипса искажений, искажениями К. п. и частными производными функций (1) устанавливается основными формулами теории искажений.

Классификация картографических проекций по положению полюса используемых сферических координат. Полюсы сферы суть особые точки географической координации, хотя сфера в этих точках не имеет каких-либо особенностей. Значит, при картографировании областей, содержащих географические полюсы, желательно иногда применять не географические координаты, а другие, в которых полюсы оказываются обыкновенными точками координации. Поэтому на сфере используют сферические координаты, координатные линии которых, так называемые вертикалы (условная долгота на них а = const ) и альмукантараты (где полярные расстояния z = const ), аналогичны географическим меридианам и параллелям, но их полюс Z 0 не совпадает с географическим полюсом P 0 (рис. 1 ). Переход от географических координат φ , λ любой точки сферы к её сферическим координатам z , a при заданном положении полюса Z 0 (φ 0 , λ 0) осуществляется по формулам сферической тригонометрии. Всякая К. п., данная уравнениями (1), называется нормальной, или прямой (φ 0 = π/2 ). Если та же самая проекция сферы вычисляется по тем же формулам (1), в которых вместо φ , λ фигурируют z , a , то эта проекция называется поперечной при φ 0 = 0 , λ 0 и косой, если 0 . Применение косых и поперечных проекций приводит к уменьшению искажений. На рис. 2 показана нормальная (а), поперечная (б) и косая (в) ортографические проекции (См. Ортографическая проекция) сферы (поверхности шара).

Классификация картографических проекций по характеру искажений. В равноугольных (конформных) К. п. масштаб зависит только от положения точки и не зависит от направления. Эллипсы искажений вырождаются в окружности. Примеры - проекция Меркатор, Стереографическая проекция .

В равновеликих (эквивалентных) К. п. сохраняются площади; точнее, площади фигур на картах, составленных в таких проекциях, пропорциональны площадям соответствующих фигур в натуре, причём коэффициент пропорциональности - величина, обратная квадрату главного масштаба карты. Эллипсы искажений всегда имеют одинаковую площадь, различаясь формой и ориентировкой.

Произвольные К. п. не относятся ни к равноугольным, ни к равновеликим. Из них выделяют равнопромежуточные, в которых один из главных масштабов равен единице, и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми.

При изображении сферы на плоскости свойства равноугольности, равновеликости, равнопромежуточности и ортодромичности несовместимы. Для показа искажений в разных местах изображаемой области применяют: а) эллипсы искажений, построенные в разных местах сетки или эскиза карты (рис. 3 ); б) изоколы, т. е. линии равного значения искажений (на рис. 8в см. изоколы наибольшего искажения углов со и изоколы масштаба площадей р ); в) изображения в некоторых местах карты некоторых сферических линий, обычно ортодромий (О) и локсодромий (Л), см. рис. 3а , и др.

Классификация нормальных картографических проекций по виду изображений меридианов и параллелей, являющаяся результатом исторического развития теории К. п., объемлет большинство известных проекций. В ней сохранились наименования, связанные с геометрическим методом получения проекций, однако рассматриваемые их группы теперь определяют аналитически.

Цилиндрические проекции (рис. 3 ) - проекции, в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели - прямыми, перпендикулярными к изображениям меридианов. Выгодны для изображения территорий, вытянутых вдоль экватора или какие-либо параллели. В навигации используется проекция Меркатора - равноугольная цилиндрическая проекция. Проекция Гаусса - Крюгера - равноугольная поперечно-цилиндрическая К. п. - применяется при составлении топографических карт и обработке триангуляций.

Азимутальные проекции (рис. 5 ) - проекции, в которых параллели - концентрические окружности, меридианы - их радиусы, при этом углы между последними равны соответствующим разностям долгот. Частным случаем азимутальных проекций являются перспективные проекции.

Псевдоконические проекции (рис. 6 ) - проекции, в которых параллели изображаются концентрическими окружностями, средний меридиан - прямой линией, остальные меридианы - кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.

Псевдоцилиндрические проекции (рис. 8 ) - проекции, в которых параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной этим прямым и являющейся осью симметрии проекций, остальные меридианы - кривыми.

Поликонические проекции (рис. 9 ) - проекции, в которых параллели изображаются окружностями с центрами, расположенными на одной прямой, изображающей средний меридиан. При построении конкретных поликонических проекций ставятся дополнительные условия. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.

Существует много проекций, не относящихся к указанным видам. Цилиндрические, конические и азимутальные проекции, называемые простейшими, часто относят к круговым проекциям в широком смысле, выделяя из них круговые проекции в узком смысле - проекции, в которых все меридианы и параллели изображаются окружностями, например конформные проекции Лагранжа, проекция Гринтена и др.

Использование и выбор картографических проекций зависят главным образом от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой К. п. Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий - в равновеликих. При этом возможно некоторое нарушение определяющих условий этих проекций (ω ≡ 0 или р ≡ 1 ), не приводящее к ощутимым погрешностям, т. е. допустим выбор произвольных проекций, из которых чаще применяют проекции равнопромежуточные по меридианам. К последним прибегают и тогда, когда назначением карты вообще не предусмотрено сохранение углов или площадей. При выборе К. п. начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их. Если ни одна из известных К. п. не удовлетворяет требованиям, предъявляемым к составляемой карте со стороны её назначения, то изыскивают новую, наиболее подходящую К. п., пытаясь (насколько это возможно) уменьшить искажения в ней. Проблема построения наивыгоднейших К. п., в которых искажения в каком-либо смысле сведены до минимума, полностью ещё не решена.

К. п. используются также в навигации, астрономии, кристаллографии и др.; их изыскивают для целей картографирования Луны, планет и др. небесных тел.

Преобразование проекций. Рассматривая две К. п., заданные соответствующими системами уравнений: x = f 1 (φ, λ) , y = f 2 (φ, λ) и X = g 1 (φ, λ) , Y = g 2 (φ, λ) , можно, исключая из этих уравнении φ и λ, установить переход от одной из них к другой:

Х = F 1 (x, у) , Y = F 2 (x, у) .

Эти формулы при конкретизации вида функций F 1 , F 2 , во-первых, дают общий метод получения так называемых производных проекций; во-вторых, составляют теоретическую основу всевозможных способов технических приёмов составления карт (см. Географические карты). Например, аффинные и дробно-линейные преобразования осуществляются при помощи картографических трансформаторов (См. Картографический трансформатор). Однако более общие преобразования требуют применения новой, в частности электронной, техники. Задача создания совершенных трансформаторов К. п. - актуальная проблема современной картографии.

Лит.: Витковский В., Картография. (Теория картографических проекций), СПБ. 1907; Каврайский В. В., Математическая картография, М. - Л., 1934; его же, Избр. труды, т. 2, в. 1-3, [М.], 1958-60; Урмаев Н. А., Математическая картография, М., 1941; его же, Методы изыскания новых картографических проекций, М., 1947; Граур А. В., Математическая картография, 2 изд., Л., 1956; Гинзбург Г. А., Картографические проекции, М., 1951; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968.

Г. А. Мещеряков.

2. Шар и его ортографические проекции.

3а. Цилиндрические проекции. Равноугольная Меркатора.

3б. Цилиндрические проекции. Равнопромежуточная (прямоугольная).

3в. Цилиндрические проекции. Равновеликая (изоцилиндрическая).

4а. Конические проекции. Равноугольная.

4б. Конические проекции. Равнопромежуточная.

4в. Конические проекции. Равновеликая.

Рис. 5а. Азимутальные проекции. Равноугольная (стереографическая) слева - поперечная, справа - косая.

Рис. 5б. Азимутальные проекции. Равнопромежуточная (слева - поперечная, справа - косая).

Рис. 5в. Азимутальные проекции. Равновеликая (слева - поперечная, справа - косая).

Рис. 8а. Псевдоцилиндрические проекции. Равновеликая проекция Мольвейде.

Рис. 8б. Псевдоцилиндрические проекции. Равновеликая синусоидальная проекция В. В. Каврайского.

Рис. 8в. Псевдоцилиндрические проекции. Произвольная проекция ЦНИИГАиК.

Рис. 8г. Псевдоцилиндрические проекции. Проекция БСАМ.

Рис. 9а. Поликонические проекции. Простая.

Рис. 9б. Поликонические проекции. Произвольная проекция Г. А. Гинзбурга.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Картографические проекции" в других словарях:

    Математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Большой Энциклопедический словарь

    КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, системные методы нанесения меридианов и параллелей Земли на плоскую поверхность. Только на глобусе можно достоверно представить территории и формы. На плоских картах больших территорий искажения неизбежны. Проекции это… … Научно-технический энциклопедический словарь