Свойства числовых неравенств примеры. Основные свойства неравенств

Числовые неравенства и их свойства

В презентации подробно изложены содержание тем ЧИСЛОВЫЕ НЕРАВЕНСТВА и СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ, приведены примеры на доказательство числовых неравенств. (Алгебра 8 класс, автор Макарычев Ю.Н.)

Просмотр содержимого документа
«Числовые неравенства и их свойства»

Числовые неравенства

и их свойства

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8


Числовые неравенства

Результат сравнения двух и более чисел записывают в виде неравенств, используя знаки , , =

Сравнение чисел мы осуществляем, пользуясь различными правилами (способами). Удобно иметь обобщенный способ сравнения, который охватывает все случаи.


Определение:

Число а больше числа b, если разность ( a – b) – положительное число.

Число а меньше числа b, если разность ( a – b) – отрицательное число.

Число а равно числу b, если разность ( a – b) – равна нулю


Обобщенный способ сравнения чисел

Пример 1.


Применение обобщенного способа сравнения чисел для доказательства неравенств

Пример 2. Доказать, что среднее арифметическое двух положительных чисел не меньше среднего геометрического этих чисел.





Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.





Р = 3а

Умножим на 3 обе части каждого из неравенств

54,2 ∙ 3 а ∙ 3

162,6

Применение свойств числовых неравенств

1) Основное понятие неравенства

2) Основные свойства числовых неравенств. Неравенства содержащие переменную.

3) Графическое решение неравенств второй степени

4) Системы неравенств. Неравенства и системы неравенств с двумя переменными.

5) Решение рациональных неравенств методом интервалов

6) Решение неравенств, содержащих переменную под знаком модуля

1. Основное понятие неравенства

Неравенство — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программирования линейные неравенства вида

a 1 x 1 + a 2 x 2 +... + a n x n * b ,

где a 1 ,..., a n , b — постоянные и знак * — один из знаков неравенства, напр. ≥,

· алгебраические

· трансцендентные

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Неравенство - алгебраическое, второй степени.

Неравенство - трансцендентное.

2. Основные свойства числовых неравенств . Неравенства содержащие переменную

1) Графиком квадратичной функции y = ах 2 +bх + с является парабола с ветвями, направленными вверх, если а > 0 , и вниз, если а (иногда говорят, что парабола направлена выпуклостью вниз, если а > 0 и выпуклостью вверх, если а). При этом возможны три случая:

2) Парабола пересекает ось 0х (т. е. уравнение ах 2 + bх + с = 0 имеет два различных корня). То есть, если а

y = ах 2 +bх + с a>0 D>0 y = ах 2 +bх + с a D >0,

Парабола имеет вершину на оси 0х (т. е. уравнение ах 2 + х + с = 0 имеет один корень, так называемый двукратный корень) То есть, если d=0, то при a>0 решением неравенства служит вся числовая прямая, а при a ах 2 + х + с

y = ах 2 +bх + с a>0 D = 0 y = ах 2 +bх + с a D =0,

3) Если d0 и ниже ее при a

y = ах 2 +bх + с a>0 D 0 y = ах 2 +bх + с a D0,

4) Решить неравенство графическим способом

1. Пусть f(x) = 3х 2 -4х - 7 тогда найдем такие х при которых f(x) ;

2. Найдем нули функции.

f(x) при х .

Ответ f(x) при х .

Пусть f(x)=х 2 +4х +5 тогда Найдем такие х при которых f(x)>0,

D=-4 Нет нулей.

4. Системы неравенств. Неравенства и системы неравенств с двумя переменными

1) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств.

2) Множество решений неравенства f(х;у)>0 можно графически изобразить на координатной плоскости. Обычно линия, заданная уравнением f(х;у)=0 ,разбивает плоскость на 2 части, одна из которых является решением неравенства. Чтобы определить, какая из частей, надо подставить координаты произвольной точки М(х0;у0) , не лежащей на линии f(х;у)=0, в неравенство. Если f(х0;у0) > 0 , то решением неравенства является часть плоскости, содержащая точку М0. если f(х0;у0)

3) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств. Пусть, например, задана система неравенств:

Для первого неравенства множество решений есть круг радиусом 2 и с центром в начале координат, а для второго- полуплоскость, расположенная над прямой 2х+3у=0. Множеством решений данной системы служит пересечение указанных множеств, т.е. полукруг.

4) Пример. Решить систему неравенств:

Решением 1-го неравенства служит множество , 2-го множество (2;7) и третьего - множество .

Пересечением указанных множеств является промежуток(2;3], который и есть множество решений системы неравенств.

5. Решение рациональных неравенств методом интервалов

В основе метода интервалов лежит следующее свойство двучлена (х-а ): точка х=α делит числовую ось на две части — справа от точки α двучлен (х‑α)>0 , а слева от точки α (х-α) .

Пусть требуется решить неравенство (x-α 1)(x-α 2)...(x-α n)>0 , где α 1 , α 2 ...α n-1 , α n — фиксированные числа, среди которых нет равных, причем такие, что α 1 (x-α 1)(x-α 2)...(x‑α n)>0 методом интервалов поступают следующим образом: на числовую ось наносят числа α 1 , α 2 ...α n-1 , α n ; в промежутке справа от наибольшего из них, т.е. числа α n , ставят знак «плюс», в следующем за ним справа налево интервале ставят знак «минус», затем — знак «плюс», затем знак «минус» и т.д. Тогда множество всех решений неравенства (x-α 1)(x‑α 2)...(x-α n)>0 будет объединение всех промежутков, в которых поставлен знак «плюс», а множество решений неравенства (x-α 1)(x-α 2)...(x‑α n) будет объединение всех промежутков, в которых поставлен знак «минус».

1) Решение рациональных неравенств (т.е неравенств вида P(x) Q(x) где - многочлены) основано на следующем свойстве непрерывной функции: если непрерывная функция обращается в нуль в точках х1 и х2 (х1;х2) и между этими точками не имеет других корней, то в промежутках(х1;х2) функция сохраняет свой знак.

Поэтому для нахождения промежутков знакопостоянства функции y=f(x) на числовой прямой отмечают все точки, в которых функция f(x) обращается в нуль или терпит разрыв. Эти точки разбивают числовую прямую на несколько промежутков, внутри каждого из которых функция f(x) непрерывна и не обращается в нуль, т.е. сохраняет знак. Чтобы определить этот знак, достаточно найти знак функции в какой либо точке рассматриваемого промежутка числовой прямой.

2) Для определения интервалов знакопостоянства рациональной функции, т.е. Для решения рационального неравенства, отмечаем на числовой прямой корни числителя и корни знаменателя, которые как и являются корнями и точками разрыва рациональной функции.

Решение неравенств методом интервалов

Решение . Область допустимых значений определяется системой неравенств:

Для функции f(x) = - 20. Находим f(x) :

откуда x = 29 и x = 13.

f (30) = - 20 = 0,3 > 0,

f (5) = - 1 - 20 = - 10

Ответ:

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }