В чем записана наследственная информация человека. §7

Введение

1.Понятие о наследственности

3.Механизм наследственности

Заключение

Список литературы

Введение

В органическом мире наблюдается удивительное сходство между родителями и детьми, между братьями и сестрами, а также другими родственниками. Это сходство обуславливается наследственностью, то есть способностью живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.

1.Понятие о наследственности

Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловленно передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью - возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность) или навыков обучения, образования, традиций (т. н. социальная, или сигнальная наследственность).Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно.

Таким образом, наследственность - это важнейшая особенность живых организмов, заключающаяся в способности передавать свои свойства и функции от родителей к потомкам.

2.Определение гена. Основная функция гена

Ген - это единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Это, казалось бы, достаточно простое положение известно многим со школы. Сейчас ясно, что многие участки ДНК не кодируют белки, а, вероятно, выполняют регулирующие функции. Во всяком случае, в структуре генома человека только около 2% ДНК представляют последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.

Основной функцией гена является кодирование информации для синтеза специфического белка.

Свойства генов

1. дискретность - несмешиваемость генов;

2. стабильность - способность сохранять структуру;

3. лабильность - способность многократно мутировать;

4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

5. аллельность - в генотипе диплоидных организмов только две формы гена;

6. специфичность - каждый ген кодирует свой продукт;

7. плейотропия - множественный эффект гена;

8. экспрессивность - степень выраженности гена в признаке;

9. пенетрантность - частота проявления гена в фенотипе;

10. амплификация - увеличение количества копий гена.

Классификация генов

1. Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК.

2. Функциональные гены - регулируют работу структурных генов.

3.Механизм наследственности

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированные (соматические) клетки тела при бесполом несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки и являются генами. Ген - это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов - нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований. Сочетание трех рядом стоящих нуклеотидов в цепи ДНК составляют генетический код. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Ген представляет собой группу рядом лежащих нуклеотидов, которыми закодирован один белок, определяющий один признак. Число генов очень велико: у человека их десятки тысяч. Один и тот же ген может оказывать влияние на развитие ряда признаков, так же, как и на формирование одного признака могут оказывать влияние несколько генов.

Каждому виду растений и животных свойствен свой количественный набор хромосом. У всех организмов одного и того же вида каждый ген расположен в одном и том же месте строго определенной хромосомы. Каждая клетка человеческого тела содержит 46 хромосом. Почти все хромосомы в наборе представлены парами, в каждую из 22-х пар входят одинаковые по величине идентичные хромосомы, а 23-я пара является половыми хромосомами: у женщин она состоит из одинаковых хромосом XX, а у мужчин - XY. В галоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие одного какого-то признака.

Генетическая информация закодирована в последовательности азотистых оснований, содержащихся в молекуле ДНК. Азотистые основания можно рассматривать в качестве “букв” генетического алфавита. Последовательность оснований образует “слова”. Гены - это своего рода “предложения”, записанные на генетическом языке. Соответственно генетическое содержимое организма представляет собой как бы “книгу”, составленную из генетических предложений. В отличие от строго определенного расположения азотистых оснований в двух комплементарных частях, нет никаких ограничений относительно того, в каком порядке должны следовать основания друг за другом вдоль одной цепи. Благодаря этому существует практически неограниченное число различных молекул ДНК. Число возможных генетических сообщений, кодируемых достаточно длинными цепями ДНК, практически не ограничено. За воспроизведение в поколениях растений, животных и человека наследственных свойств ответственны 3 эволюционно закрепленных универсальных процесса.


После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода. Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных.

Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

Таким образом, нам необходимо вспомнить, что мы знаем о молекуле ДНК.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) «прикреплены» нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали.

Цепи ДНК - комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

Рис.1. Схематический вид молекулы ДНК

На рис.2 показана часть расшифрованной структуры молекулы ДНК.

Итак, напомним, что в основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК.

Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой, приведенной на рис.3.

Рис.3. Удвоение молекулы ДНК.

В живой клетке удвоение происходит потому, что две спиральные цепи расходятся, а потом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК (рис.4).

Рис.4. Репликация ДНК

В результате создаются две двойные спирали ДНК (дочерние молекулы), каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.

Теперь обсудим, как происходит передача информации в клетке. Напомним, что у часток молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК – белок); и по каналу обратной связи (среда - белок – ДНК).

Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК (иРНК), которая может проникать через порог ядерной мембраны. Что же такое иРНК?

иРНК это:

а) одноцепочечная молекула, комплементарная одной нити ДНК;

б) копия ДНК

в) копия не всей молекулы ДНК, а лишь ее части (по длине). Эта часть соответствует одному или группе рядом лежащих генов

г) молекула, образованная под действием специального фермента – РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК? В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.

Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа «репликационной машины». Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок.

При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНК-полимеразы дважды проверяют соответствие нуклеотидов исходной матрице.

Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации,

б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

Генетический код

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка.

Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У)задает любую из 20 аминокислот.

Свойства генетического кода:

а). Код триплетен

Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.

б). Код вырожден.

Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту).

в). Код однозначен.

Каждый кодон соответствует только одной аминокислоте.

г). Генетический код универсален, т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование «слов из трех букв» - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода – с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором – лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.

Программа «Геном человека»

Международная программа «Геном человека» посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна.

В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х1013 клеток, составляет 1011 км, что в тысячу раз превышает расстояние от Солнца до Земли.

К настоящему времени практически полностью расшифрована полная последовательность ДНК человека.

Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей.

Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека.

Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%.


Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ (автокатализ).

Почти вся генетическая информация хранится в ядре клетки. Давайте рассмотрим, что она собой представляет и в каком виде она находится.
За генетическую информацию несет ответственность ДНК, а в случае вирусов РНК. Внутри ядра ДНК «сложена» в структуры называемые хромосомы. В человеческом теле содержится более 2 метров ДНК. Информация о строении белков зашифрована на молекулах ДНК и РНК специальным генетическим кодом. Эта информация предается в процессе репликации (удвоения) ДНК. Генетическую информацию мы получаем при рождении от мамы и папы в виде множества генов. Что интересно все клетки нашего организма содержат одинаковую генетическую информацию. Как же тогда возможно выполнения различными клетками совершенно разных функций? Дело в том, что в клетках не реализуется вся генетическая информация, а только лишь необходимые участки - гены.

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог Ф. Типлер: "Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором". Более того, он считает, если это так, то система жизнь - информация является вечной, бесконечной и бессмертной.

Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма - синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.

Основные идеи эволюции Дарвина с его триадой - наследственностью, изменчивостью, естественным отбором - в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.

Генетический код – это система записи генетической информации в молекуле нуклеиновой кислоты о строении молекулы полипептида, а именно, о количестве, последовательности расположения и типах аминокислот. В одном гене записана информация об одной полипептидной цепочке, т.е. о первичной структуре белка.

Генетический код характеризуется триплетностью, т.е. три нуклеотида, расположенные последовательно в цепочке нуклеиновой кислоты (ДНК или РНК), образуют триплет или кодон (кодовое слово), который кодирует одну аминокислоту и ее местоположение в пептидной цепи. Кодоны различаются последовательностью и типами нуклеотидов (азотистых оснований). Существует 64 типа кодонов, что соответствует количеству возможных сочетаний из 4 (4 типа нуклеотидов, различающихся азотистыми основаниями) по 3 (43). 61 из них – информативные кодоны, они определяют (кодируют) аминокислоты. 3 кодона (в ДНК – АТТ, АТЦ, АЦТ, соответственно в иРНК – УАА, УАГ, УГА) называют стоп-кодонами, они обеспечивают окончание синтеза белковой цепочки. Кодон ТАЦ в ДНК или АУГ в иРНК (кодирует аминокислоту метионин) – стартовый, т.е. стоит первым в гене и с него начинается синтез пептида.

При расшифровке генетического кода оказалось, что большинство аминокислот кодируются несколькими разными кодонами, другими словами, существуют кодоны – синонимы, которые различаются часто только третьими нуклеотидами (азотистыми основаниями). Например, кодоны в ДНК ЦГА, ЦГГ, ЦГТ кодируют аланин, а кодоны ГЦА, ГЦГ, ГЦТ, ГЦЦ, ТЦТ, ТЦЦ – аргинин. Это свойство генетического кода называется вырожденностью или избыточностью.

Вместе с тем было показано, что один кодон кодирует только одну аминокислоту, т.е. в нем может быть записана информация только об одной аминокислоте – иными словами, генетический код однозначен.

Генетический код обладает также неперекрываемостью, это означает, что кодоны располагаются линейно, и один нуклеотид входит в состав только одного кодона; и непрерывностью – кодоны не отделены один от другого, располагаются в цепи нуклеиновой кислоты друг за другом, т.е. расстояние между кодонами соответствует расстоянию между нуклеотидами, а какие-либо сигналы, указывающие на начало или конец кодонов, отсутствуют.

Универсальность генетического кода подразумевает, что генетический код всех организмов характеризуется одинаковыми свойствами (триплетностью, вырожденностью и т.д.); и что смысл кодонов у всех организмов один и тот же (исключение составляют некоторые кодоны митохондрий и бактерий).

У всех прокариотических и эукариотических организмов генетическая информация записана только в одной цепи ДНК, которая называется кодогенной (информативной или значащей) и обозначается знаком "+", вторая цепь не несет генетической информации – некодогенная (неинформативная или незначащая), и обозначается знаком "–".

Сохранение генетической информации

Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют одну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книгопечатанием. Например, книга издана тиражом N экземпляров. Все N книг отпечатаны с одного шаблона - типографской матрицы, поэтому они совершенно одинаковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Участок молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирована еще в 20-х годах выдающимся отечественным биологом Н. К. Кольцовым.

Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Завершающая часть работы по секвенсированию генома человека заняла у учёных около трёх лет. Расшифровка хромосомы 1 потребовала наибольшего времени, поскольку эта хромосома - самая длинная во всем геноме. Она в шесть раз длиннее самых коротких хромосом (21, 22 и Y). В ней находится около 8% генетического кода: 3141 ген и 991 псевдоген, причем многие кодирующие последовательности перекрываются. Мутации и нарушения в хромосоме ответственны за возникновение более чем 350 заболеваний, включая рак. Так что важность публикации полной карты этой хромосомы сложно переоценить.


  1. ДНК – матрица синтеза белков
  2. Удвоение ДНК. Ход образования и-РНК.
  3. Генетический код и его свойства.

1. ДНК - матрица для синтеза белков . Каким же образом в эритроцитах здорового человека образуются миллионы идентич­ных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют од­ну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книго­печатанием. Учебник, который вы держите в руках, издан ти­ражом п экземпляров. Все п книг отпечатаны с одного шаб­лона - типографской матрицы, поэтому они совершенно оди­наковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, оп­ределяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате слож­ных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соедине­ний, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структу­ре и деятельности клеток, о всех при­знаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Уча­сток молекулы ДНК, служащий матри­цей для синтеза одной полипептидной це­пи, т. е. в большинстве случаев одного белка, называют геном. Каждая молеку­ла ДНК содержит множество разных ге­нов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информа­ция записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирова­на еще в 20-х годах выдающимся отече­ственным биологом Н. К. Кольцовым.



2. Удвоение ДНК. Молекулы ДНК обла­дают поразительным свойством, не при­сущим ни одной другой из известных мо­лекул, - способностью к удвоению. Что представляет собой процесс удвоения? Вы помните, что двойная спираль ДНК по­строена по принципу комплементарности. Этот же принцип лежит в основе удвоения молекул ДНК. С помо­щью специальных ферментов водородные связи, скрепляющие нити ДНК, разры­ваются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей после­довательно пристраиваются комплемен­тарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными - они задают по­рядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов про­исходит соединение нуклеотидов друг с другом. При этом образуются новые ни­ти ДНК, комплементарные каждой из ра­зошедшихся цепей. Таким об­разом, в результате удвоения создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, син­тезированную вновь.

Дочерние молекулы ДНК ничем не отличаются друг от дру­га и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же инфор­мацию, которая содержалась в материнской клетке. Так как гены - это участки молекул ДНК, то две дочерние клетки, об­разующиеся при делении, имеют одинаковые гены.

Каждая клетка многоклеточного организма возникает из од­ной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов. Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют оди­наково «испорченный» гемоглобин. Дети, больные анемией, по­лучают «испорченный» ген от родителей через их половые клет­ки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. Ген является единицей генетической, или наследствен­ной, информации.

Трудно, глядя на типографскую матрицу, судить о том, хо­рошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хоро­ший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

Ход образования и-РНК. К рибосомам, местам синтеза бел­ков, из ядра поступает несущий информацию посредник, спо­собный пройти через поры ядерной оболочки. Таким посредни­ком является информационная РНК (и-РНК). Это одноцепочечная молекула, комплементарная одной нити молекулы ДНК. Специальный фермент - полимераза, двигаясь по ДНК, подбирает по принципу комплементарности нуклеотиды и со­единяет их в единую цепочку (рис. 21). Процесс образования и-РНК называется транскрип­цией (от лат. «транскрипцио» - переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь и-РНК аденин, если стоит гуанин - включает цитозин, если аденин - то урацил (в состав РНК не входит ти­мин).

По длине каждая из молекул и-РНК в сотни раз короче ДНК. Ин­формационная РНК - копия не всей молекулы ДНК, а только час­ти ее, одного гена или группы ря­дом лежащих генов, несущих ин­формацию о структуре белков, не­обходимых для выполнения од­ной функции. У прокариот такая группа генов называется опероном. В начале каждой группы генов находится своего рода поса­дочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только при­соединившись к промотору, полимераза способна начать синтез и-РНК. В конце группы генов фермент встречает сигнал (в ви­де определенной последовательности нуклеотидов), означающий конец переписывания. Готовая и-РНК отходит от ДНК, покида­ет ядро и направляется к месту синтеза белков - рибосоме, рас­положенной в цитоплазме клетки.

В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:

ДНК-и-РНК-белок.

3. Генетический код - определенные сочетания нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК.\

Ген - участок молекулы ДНК, несущий информа­цию о структуре одной молекулы белка.

Свойства генетического кода:

- триплетность - одна аминокислота кодиру­ется тремя рядом расположенными нуклеотидами - триплетом, или ко доном;

- универсальность - код един для всего живу­щего на Земле (у мха, сосны, амебы, человека, страуса и пр. одни и те же триплеты кодируют одни и те же аминокислоты);

- вырожденность - одной аминокислоте может со­ответствовать несколько триплетов (от двух до шести). Исключение составляют аминокислоты метионин и трип­тофан, каждая из которых кодируется только одним трип­летом (метионин кодируется триплетом АУГ);

- специфичность - каждый триплет кодирует только одну аминокислоту.

Триплеты ГАА или ГАГ, занимающие шестое место в гене здоровых людей, несут информацию о цепи гемо­глобина, кодируя глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид заменен на У, а триплеты ГУА и ГУГ кодируют валин;

- неперекрываемость - кодоны одного гена не мо­гут одновременно входить в соседний;

- непрерывность - в пределах одного гена счи­тывание генетической информации происходит в од­ном направлении.