Что такое плазма крови. Плазма

В газовом разряде возникает большое количество положительных ионов вследствие высокой эффективности ударной ионизации, причем концентрация ионов и электронов одинакова. Такая система из электронов и положительных ионов, распределенных с одинаковой концентрацией, называется плазмой . Термин «плазма» был введен в 1929 г. американскими физиками И. Ленгмюром и Л. Тонксом.

Плазма, возникающая в газовом разряде, носит название газоразрядной; к ней относятся положительный столб тлеющего разряда, канал искрового и дугового разрядов.

Положительный столб представляет собой так называемую неизотермическую плазму . В такой плазме средние кинетические энергии электронов, ионов и нейтральных молекул (атомов) различны.

Вспомним связь между средней кинетической энергией молекул идеального газа (давление газа в тлеющем разряде невелико, поэтому его можно считать идеальным) и температурой

Можно утверждать, что температуры компонентов плазмы различны. Так, электронная температура в тлеющем разряде в неоне при давлении 3 мм. рт. ст., порядка 4∙10 4 К, а температура ионов и атомов 400 К, причем температура ионов несколько выше атомной температуры.

Плазма, в которой выполняется равенство: (где индексы «э », «и », «а » относятся к электронам, ионам, атомам) называется изотермической . Такая плазма имеет место при ионизации с помощью высокой температуры (дуга, горящая при атмосферном и выше давлении, искровой канал); например, в дуге сверхвысокого давления (до 1000 атм.) температура плазмы достигает 10000 К, температура плазмы при термоядерном взрыве – порядка нескольких десятков миллионов градусов, в установке «ТОКАМАК» для исследования термоядерных реакций – порядка 7∙10 6 K.

Плазма может возникнуть не только при прохождении тока через газ. Газ можно перевести в плазменное состояние и путем его нагревания до высоких температур. Внутренние области звезд (в том числе и солнце) находятся в плазменном состоянии, температуры которых достигают 10 8 К (рис. 8.10).

Кулоновское дальнодействующее взаимодействие заряженных частиц в плазме приводит к качественному своеобразию плазмы, позволяющему считать ее особым, четвертым агрегатным состоянием вещества .

Важнейшие свойства плазмы :

Плазма – наиболее распространенное состояние вещества во Вселенной. Солнце и другие звезды состоят из полностью ионизованной высокотемпературной плазмы. Основной источник энергии излучения звезд – термодинамические реакции синтеза, протекающие в недрах звезд при огромных температурах. Холодные туманности и межзвездная среда также находятся в плазменном состоянии. Они представляют собой низкотемпературную плазму, ионизация которой происходит, главным образом, путем фотоионизации под действием ультрафиолетового излучения звезд. В околоземном пространстве слабоионизованная плазма находится в радиационных поясах и ионосфере Земли. С процессами, происходящими в этой плазме, связаны такие явления, как магнитные бури, нарушения дальней радиосвязи и полярные сияния.

Низкотемпературная газоразрядная плазма, образующаяся при тлеющем, искровом и дуговом разрядах в газах, широко используется в различных источниках света, в газовых лазерах, для сварки, резки, плавки и других видов обработки металлов.

Основной практический интерес к физике плазмы связан с решением проблемы управляемого термоядерного синтеза – процесс слияния легких атомных ядер при высоких температурах в управляемых условиях. Энергетический выход реактора составляет 10 5 кВт/м 3 в реакции

при плотности плазмы 10 5 см - 3 и температуре 10 8 К.

Удерживать высокотемпературную плазму предлагается (1950 г. СССР, И. Е. Тамм, А. Д. Сахаров) сильным магнитным полем в тороидальной камере с магнитными катушками, сокращенно - токамак . На рисунке 8.11 изображена схема токамака : 1 – первичная обмотка трансформатора; 2 – катушки тороидального магнитного поля; 3 – лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 – катушки тороидального магнитного поля; 5 – вакуумная камера; 6 – железный сердечник (магнитопровод).

В настоящее время, в рамках осуществления мировой термоядерной программы, интенсивно разрабатываются новейшие системы типа токамак . Например, в Санкт Петербурге создан первый Российский сферический токамак «Глобус-М». Планируется создание крупного токамака ТМ-15, для исследования управления конфигурацией плазмы. Начато сооружение Казахстанского токамака КТМ для отработки технологий термоядерной энергетики. На рисунке 8.12 приведена схема токамака КТМ в сечении и его вид с вакуумной камерой.

Осуществление управляемой термоядерной реакцией в высокотемпературной плазме позволит человечеству в будущем получить практически неисчерпаемый источник энергии.

Низкотемпературная плазма (Т ~ 10 3 К) находит применение в газоразрядных источниках света, газовых лазерах, термоэлектронных преобразователях тепловой энергии в электрическую. Возможно создание плазменного двигателя, эффективного для маневрирования в космическом пространстве и длительных космических полетов.

Плазма служит в качестве рабочего тела в плазменных ракетных двигателях и МГД-генераторах.

Движение плазмы в магнитном поле используется в методе прямого преобразования внутренней энергии ионизованного газа в электрическую. Этот метод осуществлен в магнитогидродинамическом генераторе (МГД-генераторе), принципиальная схема которого показана на рисунке 8.13.

Сильно нагретый ионизованный газ, образующийся в результате сгорания топлива и обогащения продуктов сгорания парами щелочных металлов, которые способствуют повышению степени ионизации газа, проходит через сопло и расширяется в нем. При этом часть внутренней энергии газа преобразуется в его кинетическую энергию. В поперечном магнитном поле (на рисунке 8.9 вектор магнитной индукции поля направлен за плоскость чертежа) положительные ионы отклоняются под действием сил Лоренца к верхнему электроду А , а свободные электроны – к нижнему электроду К . При замыкании электродов на внешнюю нагрузку в ней идет электрический ток, направленный от анода А, МГД-генератора, к его катоду К .

Свойства плазмы излучать электромагнитные волны ультрафиолетового диапазона используются в современных телевизорах с плоским плазменным экраном. Ионизация плазмы в плоском экране происходит в газовом разряде. Разряд возникает при бомбардировке молекул газа электронами, ускоренными электрическим полем - самостоятельный разряд. Разряд поддерживается достаточно высоким электрическим потенциалом – десятки и сотни вольт. Наиболее распространенным газовым наполнением плазменных дисплеев является смесь инертных газов на основе гелия или неона с добавлением ксенона.

Экран плоского телевизора или дисплея на газоразрядных элементах составлен из большого числа ячеек, каждая из которых - самостоятельный излучающий элемент. На рисунке 8.14 показана конструкция плазменной ячейки, состоящей из люминофора 1, электродов 2, инициирующих плазму 5, слоя диэлектрика (MgO) 3, стекла 4, адресного электрода 6. Адресный электрод вместе с основной функцией проводника, выполняет функцию зеркала, отражающего половину света, излучаемого люминофором, в сторону зрителя.

Срок службы такого плазменного экрана 30 тыс. часов.

В плоских газоразрядных экранах, воспроизводящих цветное изображение, применяются три разновидности люминофоров, излучающих красный (R), зеленый (G) и синий (B) свет. плоский телевизор с экраном из газоразрядных элементов содержит около миллиона маленьких плазменных ячеек, собранных в триады RGB – пиксели (pixel – picture element ).

При высоких т-рах, под действием электромагн. полей большой напряженности, при облучении потоками заряженных частиц высокой энергии. Характерная особенность плазмы, отличающая ее от обычного ионизованного , состоит в том, что линейные размеры объема, занимаемого плазмой, много больше т. наз. дебаевского радиуса экранирования D (см. ). Значение D для i-го с H i и т-рой T i определяется выражением:

где n е и Т е - и т-ра соотв., е i -заряд , е-элементарный электрич. заряд (заряд ), k- . Из этого выражения следует, что в плазме, как правило, т-ры и различаются.

В низкотемпературной плазме средняя энергия или значительно меньше эффективной энергии ионизации частиц ; высокотемпературной считается плазма, характеризуемая обратным соотношением указанных энергий (учитывается вклад в ионизацию разл. частиц). Обычно низкотемпературная плазма имеет т-ру частиц меньше 10 5 К, высокотемпературная-порядка 10 -10 8 К. Отношение заряженных частиц к суммарной всех частиц наз. степенью ионизации плазмы.

П лазма, получаемая в лаб. условиях, является в термодинамич. смысле и всегда термодинамически неравновесна. энергии и массы приводят к нарушению локального термодинамич. и стационарности (см. ), закон Планка для поля излучения, как правило, не выполняется. Плазма наз. термической, если ее состояние описывается в рамках модели локального термич. , а именно: все частицы распределены по скоростям в соответствии с законом Максвелла; т-ры всех компонент одинаковы; состав плазма определяется , в частности ионный состав обусловлен между ионизацией и (ф-ла Эггерта-Саха по сути является выражением для этих процессов); заселенности энергетич. уровней всех частиц подчиняются распределению Больцмана. Термическая плазма характеризуется обычно высокой степенью ионизации и м. б. реализована в с относительно малой эффективной энергией ионизации при достаточно высокой оптич. плотности (т.е. излучение плазмы почти целиком поглощается ее собств. частицами). Обычно плазма описывается моделью частичного локального термич. , к-рая включает все вышеперечисл. положения, но требует подчинения закону Больцмана заселенностей лишь возбужденных уровней частиц плазмы, исключая их основные состояния. Такую плазму наз. квазиравновесной; пример квазиравновесной плазмы-столб электрич. дуги при атм. .

Несоблюдение хотя бы одного из условий локального термич. приводит к возникновению не равновесной плазмы. Очевидно, существует бесконечное множество неравновесных состояний плазмы. Примером сильно неравновесной плазмы является плазма тлеющего разряда в при 10 1 -10 3 Па, в к-рой средняя энергия составляет 3-6 эВ, а т-ра тяжелых частиц не превышает обычно 1000 К. Существование и стационарность такого неравновесного состояния плазмы обусловлены затрудненностью обмена энергией между и тяжелыми частицами. В плазме мол. , помимо этого, может иметь место неэффективный обмен энергией между разл. внутр. степенями свободы: электронной, колебательной, вращательной. В пределах каждой из степеней свободы обмен энергией происходит относительно легко, что приводит к установлению квазиравновесных распределений частиц по соответствующим энергетич. состояниям. В этом случае говорят об электронной, колебат., вращат. т-рах частиц плазмы.

Осн. особенности плазмы, отличающие ее от нейтрального и позволяющие рассматривать плазму как особое, четвертое состояние материи (четвертое в-ва), состоят в следующем.

1) Коллективное взаимод., т.е. одновременное взаимод. друг с другом большого числа частиц (в обычных при нормальных условиях взаимод. между частицами, как правило, парное), обусловлено тем, что кулоновские силы притяжения и отталкивания убывают с расстоянием гораздо медленнее, чем силы взаимод. нейтральных частиц, т.е. взаимод. в плазме являются "дальнодействующими".

2) Сильное влияние электрич. и магн. полей на св-ва плазмы, к-рое приводит к появлению в плазме пространств. зарядов и токов и обусловливает целый ряд специфич. св-в плазмы.

Одно из важнейших св-в плазмы-ее квазинейтральность, т.е. почти полная взаимная компенсация зарядов на расстояниях, значительно больших дебаевского радиуса экранирования. Электрич. поле отдельной заряженной частицы в плазме экранируется полями частиц с зарядом противоположного знака, т.е. практически снижается до нуля на расстояниях порядка дебаевского радиуса от частицы. Любое нарушение квазинейтральности в объеме, занимаемом плазмой, приводит к появлению сильных электрич. полей пространств. зарядов, восстанавливающих квазинейтральность плазмы.

В состоянии плазмы находится подавляющая часть в-ва Вселенной - звезды, звездные , галактич. туманности и межзвездная среда. Около Земли плазма существует в космосе в виде "солнечного ветра", заполняет магнитосферу Земли (образуя радиац. пояса Земли) и ионосферу. Процессами в околоземной плазме обусловлены магн. бури и полярные сияния. Отражение радиоволн от ионосферной плазмы обеспечивает возможность дальней радиосвязи на Земле.

В лаб. условиях и при пром. применениях плазму получают посредством электрич. разряда в

Тысячелетия интенсивного развития, исследования жизни и природы привели человека к познанию четырёх состояний вещества. Плазма оказалась самым таинственным из них. С момента, когда человек впервые открыл для себя её существование, исследование плазмы и её практическое применение пошли семимильными шагами. Возникла и стала активно развиваться такая на сегодняшний день перспективная наука, как плазмохимия.

Еще во времена Древней Греции учёный Аристотель знал, что все тела состоят из четырёх низших элементов-стихий: земли, воды, воздуха и огня. Сегодня эти понятия изменили свои имена, но не смысл. Действительно, каждый знает, что вещество может находиться в четырёх состояниях: твёрдом, жидком, газообразном и плазменном.

Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году.

Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.

Плазма - это газ, состоящий из положительно и отрицательно заряженных частиц в таких отношениях, что общий их заряд равен нулю. Свободно движущиеся заряженные частицы могут переносить электрический ток, следовательно, плазма - это газ, обладающий электропроводностью. По сравнению с известными проводниками, в частности металлами - электролитами, плазма в тысячи раз легче.

Между газами и плазмой в некоторых отношениях нет различия. Плазма подчиняется газовым законам и во многих отношениях ведет себя, как газ.

Важная особенность плазмы - это хаотическое движение частиц, присущее газу, которое в плазме можно упорядочить. Под влиянием внешнего магнитного или электрического поля можно придать направление движению частиц плазмы. Следовательно, плазму можно представить как текучую среду, обладающую свойством проводить электрический ток.

Понятие плазмы, или плазменного состояния вещества, охватывает как горячие, так и холодные газы, обладающие свечением и электропроводностью. Различают два рода плазмы: изометрическая, возникающая при температуре газа, достаточно высокой для сильной термической ионизации, и газоразрядная, образующаяся при электрических разрядах в газах.

В изометрической плазме средняя кинетическая энергия частиц: электронов, ионов, нейтральных и возбужденных атомов и молекул - одинаковая. При тепловом равновесии с окружающей средой такая плазма может существовать неограниченно долго. Газоразрядная плазма устойчива только при наличии в газе электрического поля, ускоряющего электроны. Температура газоразрядной плазмы выше, чем температура нейтрального газа. Таким образом, плазменное состояние является неустойчивым, и при прекращении действия электрического поля газоразрядная плазма исчезает в течение доли секунды, а именно 10-5 и 10-7 сек, так как за этот период возникает деионизация газов. Следовательно, плазма представляет собой, с одной стороны, состояние газа и, с другой - смесь нескольких газов. Она состоит из нормальных молекул, свободных электронов, ионов и фотонов. Совокупность частиц каждого рода образует свой собственный газ, состоящий из нейтральных молекул, электронов, ионов и фотонов. Все эти газы, вместе взятые, и образуют то, что называется плазмой.

Плазма возникает в результате ионизации молекул: при столкновении двух частиц молекул с большой энергией, при столкновении молекул с электронами или ионами, при действии на молекулы фотонов. Все эти процессы обратимы, так как в плазме протекают процессы рекомбинации - восстановления нейтрального состояния. Практически плазма может образоваться при горении костра, при пропускании через газ электрического тока, при повышенных температурах и т. д.

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9%) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной. К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1% массы Солнечной системы, а объём - и того меньше: всего 10?15%. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов.

Плазма обладает различными свойствами. Основными из них являются:

  • 1. Электропроводность - это основное свойство плазмы. С электропроводностью связано другое свойство, а именно свечение, как результат возбуждения молекул. Внутренняя энергия плазмы равна для одноатомного газа 3 кал/град * моль, а для многоатомных молекул, например бензола, - 12 кал/град * моль. Для плазменного состояния теплоемкость равняется 100-200 кал/град - моль, т. е. в 40-50 раз больше, чем у газов. Большая теплоемкость объясняется тем, что при переходе вещества из обычного в плазменное состояние часть энергии тратится на ионизацию. Эта энергия, как мы видим, достаточно велика.
  • 2. Плазма обладает специфическим движением. Оно вызывается наличием большого количества зарядов, обусловливающих электропроводность плазмы, что приводит к новому движению плазмы, которого нет ни в одном из остальных агрегатных состояний. Как известно, у неионизированных систем оно происходит под действием силы тяжести, инерции, упругости, а здесь - под влиянием магнитных и электрических сил. Беспорядочное движение электронов и ионов приводит к тому, что плотность одинаково заряженных частиц на одних участках становится большей или меньшей, в результате чего интенсивность заряда на одних участках или увеличивается, или уменьшается, что вызывает движение положительно заряженных частиц в сторону более интенсивных зарядов отрицательных частиц. В результате этого движения возникают колебания типа маятника, так как перемещение отрицательно заряженного поля к положительному, в свою очередь, вызывает новые участки с различной плотностью зарядов одного знака, т. е. возникают волны положительного и отрицательного электричества.
  • 3. Одним из наиболее важных свойств плазмы является возможность возникновения электромагнитных колебаний в чрезвычайно широком диапазоне под влиянием движения, происходящего в самой плазме или под влиянием электрического тока, протекающего в плазме. При наличии внешнего сильного магнитного поля плазма начинает перемещаться в направлении перпендикулярном току, что позволяет, действуя электромагнитным полем, замкнуть движение плазмы по кругу.

Это свойство плазмы имеет очень важное значение для получения высоких температур.

Синтез ядер

Считается, что запасов химически топлива человечеству хватит на несколько десятков лет. Ограниченны и разведанные запасы ядерного горючего. Спасти человечество от энергетического голода и стать практически неисчерпаемым источником энергии могут управляемые термоядерные реакции в плазме.

В 1 л обычной воды содержится 0,15 мл воды тяжёлой (D2O). При слиянии ядер дейтерия из 0,15 мл D2O выделяется столько же энергии, сколько её образуется при сгорании 300 л бензина. Тритий в природе практически не существует, однако его можно получить, бомбардируя нейтронами n изотоп лития.

Ядро атома водорода не что иное как протон p. В ядре дейтерия содержится, кроме того, ещё один нейтрон, а в ядре трития - два нейтрона. Дейтерий и тритий могут реагировать друг с другом десятью разными способами. Но вероятности такой реакций различаются порой в сотни триллионов раз, а количество выделяющейся энергии - в 10-15 раз. Практический интерес представляют только три из них.

Если все ядра в каком-то объёме одновременно вступают в реакцию, энергия выделяется мгновенно. Происходит термоядерный взрыв. В реакторе же реакция синтеза должна протекать медленно.

Осуществить управляемый термоядерный синтез до сих пор не удалось, а преимущества он сулит немалые. Энергия, которая выделяется при термоядерных реакциях на единицу массы топлива, в миллионы раз превышает энергию химического топлива и, значит, в сотни раз дешевле. В термоядерной энергетике нет выброса продуктов сгорания в атмосферу и радиоактивных отходов. Наконец, на термоядерной электростанции исключен взрыв.

Во время синтеза основная часть энергии (более 75%) выделяется в виде кинетической энергии нейтронов или протонов. Если замедлить нейтроны в подходящем веществе, оно нагревается; полученную теплоту легко превратить в электрическую энергию. Кинетическая энергия заряженных частиц - протонов - преобразуется в электричество непосредственно.

В реакции синтеза ядра должны соединяться, но они заряжены положительно и, следовательно, по закону Кулона, отталкиваются. Чтобы преодолеть силы отталкивания, даже ядрам дейтерия и трития, имеющим наименьший заряд (Z. = 1), необходима энергия около 10 или 100 кэВ. Ей соответствует температура порядка 108-109 К. При таких температурах любое вещество находится в состоянии высокотемпературной плазмы.

С позиций классической физики реакция синтеза невозможна, но здесь на помощь приходит чисто квантовый - туннельный эффект. Вычислено, что температура зажигания, начиная с которой выделение энергии превосходит её потери, для реакции дейтерий- тритий (DТ) равна приблизительно 4,5х107 К, а для реакций дейтерий-дейтерий (DD) - около 4х108 К. Естественно, предпочтительнее реакция DТ. Нагревают плазму электрическим током, лазерным излучением, электромагнитными волнами и другими способами. Но важна не только высокая температура.

Чем выше концентрация, тем чаще сталкиваются друг с другом частицы, поэтому может показаться, что для осуществления термоядерных реакций лучше использовать плазму высокой плотности. Однако, если бы в 1 см 3 плазмы содержалось 1019 частиц (концентрация молекул в газе при нормальных условиях), давление в ней при температурах термоядерных реакций достигало бы порядка 106 атм. Такого давления не выдерживает ни одна конструкция, а потому плазма должна быть разрежённой (с концентрацией около 1015 частиц в 1 см 3). Соударения частиц в этом случае происходят реже, и для поддержания реакции необходимо увеличивать время пребывания их в реакторе, или время удержания. Значит, для осуществления термоядерной реакции необходимо рассматривать произведение концентрации частиц плазмы на время их удержания. Для реакций DD это произведение (так называемый критерий Лоусона) равно 1016 с/см 3 , а для реакции DТ - 1014 с/см 3 .

Плазма Плазменная лампа , иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая филаментацию. Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами . Этот процесс приводит к излучению со спектром , соответствующим возбуждаемому газу.

Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон . Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями . Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году , возможно из-за ассоциации с плазмой крови . Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящееся в «неплазменном» состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём - и того меньше: всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма).

Свойства и параметры плазмы

Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:

  • Достаточная плотность : заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:
, где - концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий : радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Классификация

Плазма обычно разделяется на идеальную и неидеальную , низкотемпературную и высокотемпературную , равновесную и неравновесную , при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры . Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = n i /(n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме n e определяется очевидным соотношением: n e =<Z > n i , где <Z > - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества ». Примером может служить Солнце .

Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора .

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвертым состоянием вещества . Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

Свойство Газ Плазма
Электрическая проводимость Крайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее, чем гравитационные.
Число сортов частиц Один
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации , а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей , согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов - типичное свойство сложных систем , если использовать для их описания простые модели . Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц , из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана . Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell являются более подробными, чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности электрического заряда и тока определяются путём суммирования числа частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число частиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек.

Базовые характеристики плазмы

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z - зарядовое число; k - постоянная Больцмана; К - длина волны; γ - адиабатический индекс; ln Λ - Кулоновский логарифм.

Частоты

  • Ларморова частота электрона , угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • Ларморова частота иона , угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
  • плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

Длины

  • Де-Бройлева длина волны электрона , длина волны электрона в квантовой механике:
  • минимальное расстояние сближения в классическом случае , минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
  • гиромагнитный радиус электрона , радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • гиромагнитный радиус иона , радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
  • размер скин-слоя плазмы , расстояние на которое электромагнитные волны могут проникать в плазму:
  • Радиус Дебая (длина Дебая) , расстояние на котором электрические поля экранируются за счёт перераспределения электронов:

Скорости

  • тепловая скорость электрона , формула для оценки скорости электронов при распределении Максвелла . Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
  • тепловая скорость иона , формула для оценки скорости ионов при распределении Максвелла :
  • скорость ионного звука , скорость продольных ионно-звуковых волн:
  • Альфвеновская скорость , скорость Альфвеновских волн :

Безразмерные величины

  • квадратный корень из отношения масс электрона и протона :
  • Число частиц в сфере Дебая:
  • Отношение Альфвеновской скорости к скорости света
  • отношение плазменной и ларморовской частот для электрона
  • отношение плазменной и ларморовской частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

Прочее

  • Бомовский коэффициент диффузии
  • Поперечное сопротивление Спитцера

Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Формы плазмы

Фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящееся в «неплазменном» состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объем и того меньше - всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма (англ.)).

Свойства и параметры плазмы

Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:

  • Достаточная плотность : заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных частиц, состоящей из многих ионов . Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:
, где - концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий : радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Классификация

Плазма обычно разделяется на идеальную и неидеальную , низкотемпературную и высокотемпературную , равновесную и неравновесную , при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

При чтении научно-популярной литературы, читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов градусов. Для описания плазмы в физике удобно использовать не температуру, а энергию, выраженную в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1эВ = 11600 градусов Кельвина. Таким образом становится понятно, что температура в «десятки тысяч градусов» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч градусов.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч градусов).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы кельвинов.

Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры . Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = n i /(n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме n e определяется очевидным соотношением: n e =<Z > n i , где <Z > - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества ». Примером может служить Солнце .

Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Слово плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объема, а число частиц в единице объема). Плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов n 0 . В горячей плазме n 0 мала, но может тем не менее быть важной для физики процессов в плазме. Плотность в физике плазмы описывается безразмерным параметром плазмы r s , который определяется как отношение среднего межчастичного состояния к радиусу бора.

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвертым состоянием вещества . Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объема. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает что плазма является чем-то большим чем газ по причине следующих различий:

Свойство Газ Плазма
Электрическая проводимость Очень мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее чем гравитационные.
Число сортов частиц Один
Газы состоят из подобных друг другу частиц, которые движутся под действием гравитации , а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей , согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов - типичное свойство сложных систем , если использовать для их описания простые модели . Наиболее сильное различие между реальным состоянием плазмы и ее математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или, применяя вероятностный подход. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц , из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана . Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.

Базовые характеристики плазмы

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ = m i / m p ; Z - зарядовое число; k - постоянная Больцмана; К - длина волны; γ - адиабатический индекс; ln Λ - Кулоновский логарифм.

Частоты

  • Ларморова частота электрона , угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • Ларморова частота иона , угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
  • плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

Длины

  • Де-Бройлева длина волны электрона , длина волны электрона в квантовой механике:
  • минимальное расстояние сближения в классическом случае , минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
  • гиромагнитный радиус электрона , радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • гиромагнитный радиус иона , радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
  • размер скин-слоя плазмы , расстояние на которое электромагнитные волны могут проникать в плазму:
  • Радиус Дебая (длина Дебая) , расстояние на котором электрические поля экранируются за счёт перераспределения электронов:

Скорости

  • тепловая скорость электрона , формула для оценки скорости электронов при распределении Максвелла . Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
  • тепловая скорость иона , формула для оценки скорости ионов при распределении Максвелла :
  • скорость ионного звука , скорость продольных ионно-звуковых волн:
  • Альфвеновская скорость , скорость Альфвеновских волн:

Безразмерные величины

  • квадратный корень из отношения масс электрона и протона :
  • Число частиц в сфере Дебая:
  • Отношение Альфвеновской скорости к скорости света
  • отношение плазменной и ларморовской частот для электрона
  • отношение плазменной и ларморовской частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

Прочее

  • Бомовский коэффициент диффузии
  • Поперечное сопротивление Спитцера